Skip to main content
Log in

A boundary-integral equation method for free surface viscous flows

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si propone un metodo basato sulla soluzione di equazioni integrali di contorno per flussi viscosi con superficie libera. Tale metodo è applicato allo studio della convezione termocapillare ed al processo di formazione di una goccia, entrambi in condizioni di microgravità. La presenza dei termini non lineari nell'equazione di Navier-Stokes comporta un integrale di volume che viene approssimato mediante un processo di linearizzazione.

Risultati numerici per flussi termocapillari con superficie libera sia fissa che mobile sono confrontati con altri ottenuti in precedenza con un metodo alle differenze finite. Si presentano inoltre alcuni risultati preliminari sul problema della formazione della goccia ed in particolare l'evoluzione nel tempo della configurazione geometrica della superficie libera. Nei due casi si analizzano solo campi bidimensionali.

Summary

A boundary integral equation method is proposed for the solution of viscous recirculating flows with free surfaces. In particular the method is applied to thermocapillary convection and to drop formation, both in micro-gravity conditions, the latter to test its capability to handle real unsteady problems.

The presence of non linear terms in Navier-Stokes equations leads to a volume integral, which has to be approximated by a linearization procedure.

Several numerical results for thermocapillary flows, both with fixed and moving free surface, are discussed in comparison with previously obtained finite difference solutions. Some preliminary results, and in particular the time evolution of the free surface shape, are also presented for the drop formation problem. Only plane two dimensional fields are considered for both problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Strani M., Piva R.,Surface tension driven flows in micro-gravity conditions, Int. Jour. for Numerical Methods in Fluids, vol. 2, 367–386, 1982.

    Google Scholar 

  2. Strani M., Piva R., Graziani G.,Thermocapillary convection in a rectangular cavity: asymptotic theory and numerical simulation, J. Fluid Mech. vol. 130, 347, 1983.

    Google Scholar 

  3. Piva R., Di Carlo A., Favini B., andGuj G.,Adaptive Curvilinear Grids for Large Reynolds Number Viscous Flows, Lecture Notes in Physics n. 170, 414–420, 1982.

    Google Scholar 

  4. Morino L. andKuo C.C.,Subsonic Potential Aerodynamics for Complex Configurations: a General Theory, AIAA J., vol. 12, n. 2, 191–197, 1974.

    Google Scholar 

  5. Rizzo F.,An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics, Q. Applied Math., vol. 25, 83, 1967.

    Google Scholar 

  6. Cruse T.A.,Numerical Solutions in Three Dimensional Elastostatics, Int. J. Solids Struct., vol. 5, 1295, 1969.

    Google Scholar 

  7. Brebbia C.A.,The Boundary Element Method for Engineers, Pentech Press, London, 1978.

    Google Scholar 

  8. Bush M.B., Tanner R.I.,Numerical Solution of Viscous flows using Integral Equation Method, Int. J. Numer. Meth. Fluids, vol. 3, 71, 1983.

    Google Scholar 

  9. Morse P.M.,Feshbach H.,Methods of theoretical Physics, McGraw-Hill, 1953.

  10. Greenberg M.D.,Application of Green's Functions in Science and Engineering, Prentice Hall, 1971.

  11. Piva R.,Morino L.,Green's Vector Method for Unsteady Navier Stokes Equations, (to appear), 1984.

  12. Hancock G.J.,The self propulsion of Microscopic Organisms through Liquids, Proc. Roy. Soc. A. 217, 96, 1953.

    Google Scholar 

  13. Hasimoto H., Sano O.,Stokeslet and Eddies in Creeping Flow, Ann. Rev. Fluid Mech., vol. 12, 335, 1980.

    Google Scholar 

  14. Chwang A.T., Wu T.Y.,Hydromechanics of low Reynolds number flow. Part 2. Singularity method for Stokes flows, J. Fluid Mech., vol. 67, 787, 1985.

    Google Scholar 

  15. Ladyzhenskaya O.A.,The Mathematical Theory of Viscous Incompressible Flow, Gordon and Beach, New York, 1963.

    Google Scholar 

  16. Mikhlin S.G.,Integral Equations, Pergamon Press, London, 1957.

    Google Scholar 

  17. Zabreyko P.P., et al.,Integral Equations — a Reference Text, Noordrhoff, 1975.

  18. Ma S.Y.,The Boundary Elements Applied to Steady Heat Conduction Problems, Proc. Third Int. Conf. Num. Meth. in Thermal Problems, Seattle Aug. 1983.

Download references

Author information

Authors and Affiliations

Authors

Additional information

In leave of absence from Tianjin University, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, S., Graziani, G. & Piva, R. A boundary-integral equation method for free surface viscous flows. Meccanica 19, 294–299 (1984). https://doi.org/10.1007/BF01556326

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01556326

Keywords

Navigation