Skip to main content
Log in

Algorithms for multicommodity flows in planar graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

This paper gives efficient algorithms for the muiticommodity flow problem for two classes C12 and C01 of planar undirected graphs. Every graph in C12 has two face boundaries B1 and B2 such that each of the source-sink pairs lies on B1 or B2. On the other hand, every graph inC 01 has a face boundaryB 1 such that some of the source-sink pairs lie onB 1 and all the other pairs share a common sink lying onB 1. The algorithms run inO(kn +nT(n)) time if a graph hasn vertices andk source-sink pairs andT(n) is the time required for finding the single-source shortest paths in a planar graph ofn vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

    MATH  Google Scholar 

  2. H. Diaz and G. de Ghellinck, Multicommodity maximum flow in planar networks (theD-algorithm approach), CORE Discussion Paper No. 7212, Center for Operations Research and Econometrics, Louvain-la-Neuve, 1972.

    Google Scholar 

  3. G. N. Frederickson, Shortest-path problems in planar graphs,Proc. 24th IEEE Symp. on Foundations of Computer Science, Tucson, 1983, pp. 242–247.

  4. H. Gabow and R. E. Tarjan, A linear-time algorithm for a special case of disjoint set union,J. Comput. System Sci.,30 (1985), pp. 209–221.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Hassin, On multicommodity flows in planar graphs,Networks,14 (1984), pp. 225–235.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. J. Lipton, D. J. Rose, and R. E. Tarjan, Generalized nested dissection,SIAM J. Numer. Anal,16, 2 (1979), pp. 346–358.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Matsumoto, T. Nishizeki, and N. Saito, An efficient algorithm for finding multicommodity flows in planar networks,SIAM J. Comput.,14, 2 (1985), pp. 289–302.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Matsumoto, T. Nishizeki, and N. Saito, Planar multicommodity flows, maximum matchings, and negative cycles,SIAM J. Comput.,15, 2 (1985), pp. 495–510.

    Article  MathSciNet  Google Scholar 

  9. T. Nishizeki, N. Saito, and K. Suzuki, A linear-time routing algorithm for convex grids,IEEE Trans. Computer-Aided Design,4, 1 (1985), pp. 68–76.

    Article  Google Scholar 

  10. H. Okamura, Multicommodity flows in graphs,Discrete Appl. Math.,6 (1983), pp. 55–62.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Okamura and P. D. Seymour, Multicommodity flows in planar graphs,J. Combin. Theory Ser. B,31 (1981), pp. 75–81.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Sakarovitch, The Multicommodity Flow Problem, Doctoral Thesis, Operations Research Center, University of California, Berkeley, 1966.

    Google Scholar 

  13. M. Sakarovitch, Two commodity network flows and linear programming,Math. Programming,4 (1973), pp. 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees,J. Comput. System Sci.,26 (1983), pp. 362–390.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. W. Suurballe and R. E. Tarjan, A quick method for finding shortest pairs of disjoint paths,Networks,14 (1984), pp. 325–336.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Suzuki, A. Ishiguro, and T. Nishizeki, Edge-disjoint paths in a region bounded by nested rectangles, Technical Report AL85-28, Institute of Electrical and Communication Engineers of Japan, 1985, pp. 13–22 (in Japanese).

  17. H. Suzuki, T. Nishizeki, and N. Saito, Multicommodity flows in planar undirected graphs and shortest paths,Proc. 17th Annual ACM Symp. on Theory of Computing, 1985, pp. 195–204.

  18. H. Suzuki, T. Nishizeki, and N. Saito, A variable priority queue and its applications, Technical Report CAS86-131, Institute of Electrical and Communication Engineers of Japan, 1986, pp. 23–33.

  19. É. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Report 84360-OR, Institut Ökonometrie und Operations Research, Rheinishe Friedrich-Wilhelms Universität, Bonn.

  20. R. E. Tarjan,Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Tatsuo Ohtsuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, H., Nishizeki, T. & Saito, N. Algorithms for multicommodity flows in planar graphs. Algorithmica 4, 471–501 (1989). https://doi.org/10.1007/BF01553903

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01553903

Key words

Navigation