Abstract
Upon exposure of the middle phalanx of the finger to air at -10° to-15°C moving at 10 m/sec, the surface temperature cooled not toward air temperature but toward a higher temperature, T′ = (Ta + τ). This was due to heat input, about 118 joule over 4.3 min, by conduction from the proximal and distal phalanges not exposed to the cold air. Calculated thermal constants for the finger are somewhat different from those for water and account for the rapidity of the cooling. The incidence of either freezing or cold-induced vasodilatation could not be correlated with the relative cooling rate because of the occurrence of indeterminate supercooling. Within the same range of supercooled temperatures, freezing occurred in 16 cases, cold induced vasodilatation in 7 cases, and nothing in 3 cases. The factors which induce crystallization on the one hand or vasodilatation on the other hand, remain to be discovered.
Zusammenfassung
Wenn das Mittelglied eines Fingers einer Temperatur von -10° bis -15°C bei einem Wind von 10 m/sec ausgesetzt wurde, kühlte die Hauttemperatur nicht bis zur Lufttemperatur, sondern bis zu einer höheren Temperatur T′ = (Ta + τ) ab. Dies war Folge des Wärmezuflusses, etwa 118 joule über 4.3 min, durch Konduktion von den nicht exponierten proximalen und distalen Fingergliedern. Die berechneten Wärmekonstanten für den Finger waren verschieden von denen für Wasser und erklären die Schnelligkeit der Abkühlung. Die Häufigkeit von Erfrieren oder kältebedingter Gefässerweiterung liess sich wegen des Auftretens unbestimmter Ueberkühlung nicht mit der relativen Abkühlungsrate korrelieren. Innerhalb des gleichen Bereiches überkühlter Temperaturen traten in 16 Fällen Erfrierungen, in 7 Fällen kältebedingte Gefässerweiterung und in 3 Fällen nichts auf. Die Faktoren die entweder Kristallisation oder Gefässerweiterung bedingten, sind unbekannt.
Resume
Lorsque l'on expose la deuxième phalange à une température de -10° à -15°C par un vent de 10 m/sec, sa température de surface ne s'abaisse pas jusqu'à celle de l'air ambiant, mais seulement jusqu'à une valeur T′ = (Ta + τ). Ceci est dû à l'échange de chaleur — environ 118 joules pour 4,3 min — provenant de la troisième et de la première phalange non exposées à l'air froid. Les constantes thermiques calculées sont différentes de celles de l'eau, ce qui explique le refroidissement rapide du corps humain. Les causes de gelure ou de vasodilatation due au froid ne peuvent pas être mises en corrélation avec le taux de refroidissement relatif en raison de l'apparition inexpliquée de phénomènes de surrefroidissement. Dans le même intervalle de températures basses, on a constaté 16 cas de gelures, 7 de vasodilatation due au froid et, dans 3 cas, aucune modification n'est apparue. Les faits qui provoquent soit la cristallisation, soit la vasodilatation ne sont pas connus jusqu'ici.
Similar content being viewed by others
References
CARSLAW, H.S. and JAEGER, J.C. (1950): Conduction of Heat in Solids. Oxford University Press, London.
DAVIS, T.R.A. and MATZGER, A.D. (1960): The Cooling Effect of Wind on the Little Finger. US Army Medical Research Laboratory Report No. 440.
DeVRIES, A.L. and WOHLSCHLAG, D.E. (1969): Freezing resistance in some antarctic fishes. Science, 163: 1073–1074.
GREENFIELD, A.D.M. and SHEPHERD, J.T. (1950): A quantitative study of the response to cold of the circulation through the fingers of normal subjects. Clin. Sci., 9: 323–346.
LEWIS, T. and LOVE, W.S. (1926): Vascular reactions of the skin to injury. Part III. Some effects of freezing, of cooling and of warming. Heart, 13: 27–60.
MOLNAR, G.W. (1967): Device for the determination of the heat transfer coefficients for body segments. In: Digest of the 7th International Conference on Medical and Biological Engineering. B. Jacobson (ed.), Royal Acad. Eng.Sci., Stockholm, 393.
MOLNAR, G.W. (1969a): Newton's thermometer: a model for testing Newton's law of cooling. Physiologist, 12: 9–19.
MOLNAR, G.W. (1969b): Newton's law of cooling applied to Newton's ingot of iron and to other solids. Physiologist, 12: 137–151.
MOLNAR, G.W. (1970): Factors which cause deviation from Newton's law of cooling. J. Ass. Adv. Med. Instr., 4: 89–93.
MOLNAR, G.W. (1971): Analysis of the rate of digital cooling. J. Physiol. (Paris), 63: 350–352.
MOLNAR, G.W., HURLEY, H.J. Jr. and FORD, R. (1969): Application of Newton's law to body cooling. Pflüg. Arch. ges. Physiol., 311: 16–24.
MOLNAR, G.W. and ROSENBAUM, J.C. Jr. (1963): Surface temperature measurement with thermocouples. In: Temperature, its Measurement and Control in Science and Industry. Vol. 3, Part 3. Biology and Medicine. J.D. Hardy (ed.), Reinhold, New York, 3–11.
WILSON, O. and GOLDMAN, R.F. (1970): Role of air temperature and wind in the time necessary for a finger to freeze. J. appl. Physiol., 29: 658–664.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Molnar, G.W., Wilson, O. & Goldman, R.F. Analysis of events leading to frostbite. Int J Biometeorol 16, 247–258 (1972). https://doi.org/10.1007/BF01553736
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01553736