Skip to main content
Log in

Organization and chromosomal location of repetitive DNA sequences in three species of squamate reptiles

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Repetitive DNA sequences were isolated from the genomes of species representing three major clades of squamate reptiles. A repetitive sequence (Cn4C7) was isolated from the New Mexican whiptail lizard,Cnemidophorus neomexicanus. This sequence is distributed throughout the chromosomes, but is more concentrated in the telomeric region. Cn4C7 also hybridizes to the chromosomes of otherCnemidophorus. Some evidence was found for concerted evolution of this repeat in hybrid unisexual lineages. In the lesser earless lizard,Holbrookia maculata, the predominant repeat in the genome is represented by a sequence (Hm1E11) which is restricted to the area flanking the centromere in all species ofHolbrookia. Two families of repetitive sequences (one dispersed, and the other telomeric) were isolated from the western diamondback rattlesnake,Crotalus atrox. The type and distribution of repetitive sequences in squamates is often taxon-specific, and may be useful as characters for elucidating taxonomic relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnheim N (1979) Characterization of mouse ribosomal gene fragments purified by molecular cloning.Gene 7, 83–96.

    PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE,et al. (eds) (1987)Current Protocols in Molecular Biology. New York: John Wiley & Sons.

    Google Scholar 

  • Baker RJ, Bull JJ, Mengden GA (1971) Chromosomes ofElaphe subocularis (Reptilia: Serpentes), with the description of anin vivo technique for preparation of snake chromosomes.Experientia 27, 1228–1229.

    Google Scholar 

  • Baker RJ, Wichman HA (1990) RetrotransposanMys is concentrated on the sex chromosomes: Implications for copy number containment.Evolution 44, 2083–2088.

    Google Scholar 

  • Bogenberger JM, Neitzel H, Fittler F (1987) A highly repetitive DNA component common to all Cervidae: its organization and chromosomal distribution during evolution.Chromosoma 95, 154–161.

    PubMed  Google Scholar 

  • Bradley RD, Davis SK, Bayouth JM, Hamilton MJ, Maltbie M, Baker RJ (1991) Chromosomal distribution of some repetitive DNA sequences in pocket gophers (Geomys, Crato-geomys, and Thomomys) as determined byin situ hybridi-zation.Occas Pap, Mus, Texas Tech Univ 141, 1–14.

    Google Scholar 

  • Capriglione T, Olmo E, Odierna G, Smith DI, Miller OJ (1989) Genome composition and tandemly repetitive sequence at some centromeres in the lizardPodarcis s. sicula Raf.Genetica 79, 85–91.

    Google Scholar 

  • Demas S, Wachtel S (1991) DNA fingerprinting in reptiles: Bkm hybridization patterns in Crocodilia and Chelonia.Genome 34, 472–476.

    PubMed  Google Scholar 

  • de Queiroz K (1992) Phylogenetic relationships and rates of allozyme evolution among lineages of sceloporine sand lizards.Biol. J. Linn. Soc. 45, 333–362.

    Google Scholar 

  • Epplen JT, Diedrich UD, Wagenmann M, Schmidtke J, Engel W (1979) Contrasting DNA sequence organization patterns in sauropsidian genomes.Chromosoma 75, 199–214.

    PubMed  Google Scholar 

  • Etheridge R, de Queiroz K (1988) A phylogeny of Iguanidae. In: Estes R and Pregill G, eds.Phylogenetic Relationships of the Lizard Families. Essays Commemorating Charles L. Camp. Stanford, California: Stanford University Press, pp 283–367.

    Google Scholar 

  • Evans GA, Lewis K, Rothenberg BE (1989) High efficiency vectors for cosmid microcloning and genomic analysis.Gene 79, 9–20.

    PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal Biochem 132, 6–13.

    PubMed  Google Scholar 

  • Frost DR, Etheridge R (1989) A phylogenetic analysis and taxonomy of iguanian lizards (Reptilia: Squamata).Misc Publ Univ Kansas Mus Nat Hist 81, 1–65.

    Google Scholar 

  • Hamilton MJ, Honeycutt RL, Baker RJ (1990) Intragenomic movement, sequence amplification and concerted evolution in satellite DNA inReithrodontomys: Evidence fromin situ hybridization.Chromosoma 99, 321–329.

    PubMed  Google Scholar 

  • Hamilton MJ, Hong G, Wichman HA (1992) Intragenomic movement and concerted evolution of satellite DNA inPeromyscus: evidence fromin situ hybridization.Cytogenet Cell Genet 60, 40–44.

    PubMed  Google Scholar 

  • Hillis DM, Moritz C, Porter CA, Baker RJ (1991) Evidence for biased gene conversion in concerted evolution of ribosomal DNA.Science 251, 308–310.

    PubMed  Google Scholar 

  • Janecek LL, Longmire JL, Wichman HA, Baker RJ (1993) Genome organization of repetitive elements in the rodent,Peromyscus leucopus.Mammalian Genome 4, 374–381.

    PubMed  Google Scholar 

  • Jones KW, Singh L (1981) Conserved repeated DNA sequences in vertebrate sex chromosomes.Hum Genet 58, 46–53.

    PubMed  Google Scholar 

  • Knight A, Densmore LD III, Rael ED (1992) Molecular systematics of the Agkistrodon complex. In: Campbell JA and Brodie ED, Jr, eds.Biology of the pitvipers. Tyler, Texas: Selva, pp 49–69.

    Google Scholar 

  • Leviton AE, Gibbs RH, Jr, Heal E, Dawson CE (1985) Standards in herpetology and ichthyology: Part I. Standard symbolic codes for institutional resource collections in herpetology and ichthyology.Copeia 1985, 802–832.

    Google Scholar 

  • Longmire JL, Lewis AK, Brown NC,et al. (1988) Isolation and molecular characterization of a highly polymorphic centromeric tandem repeat in the family Falconidae.Genomics 2, 14–24.

    PubMed  Google Scholar 

  • Love J, Deininger P (1992) Characterization and phylogenetic significance of a repetitive DNA sequence from whooping cranes (Grus americana).Auk 109, 73–79.

    Google Scholar 

  • Meyne J, Baker RJ, Hobart HH,et al. (1990) Distribution of nontelomeric sites of the (TTAGGG) n telomeric sequence in vertebrate chromosomes.Chromosoma 99, 3–10.

    PubMed  Google Scholar 

  • Minnick MF, Stillwell LC, Heineman JM, Stiegler GL (1992) A highly repetitive DNA sequence possibly unique to canids.Gene 110, 235–238.

    PubMed  Google Scholar 

  • Monaco PJ, Swan KF, Rasch EM, Musich PR (1989) Characterization of a repetitive DNA in the unisexual fishPoecilia formosa. I. Isolation and cloning of the MboI family,In: Dawley RM and Bogart JP, eds.Evolution and Ecology of Unisexual Vertebrates. Bull. 466, Albany, New York State Museum, pp 123–131.

    Google Scholar 

  • Moyzis RK, Albright KL, Bartholdi MF,et al. (1987) Human chromosome-specific repetitive DNA sequences: Novel markers for genetic analysis.Chromosoma 95, 375–386.

    PubMed  Google Scholar 

  • Naruse K, Mitani H, Shima A (1992) A highly repetitive interspersed sequence isolated from genomic DNA of the Medaka,Oryzias latipes, is conserved in three other related species within the genusOryzias.J Exp Zool 262, 81–86.

    PubMed  Google Scholar 

  • Olmo E (1981) Evolution of genome size and DNA base composition in reptiles.Genetica 57, 39–50.

    Google Scholar 

  • Olmo E, Capriglione T, Odierna G (1989) Genome size evolution in vertebrates: Trends and constraints.Comp Biochem Physiol 92B, 447–453.

    Google Scholar 

  • Paull D, Williams EE, Hall WP (1976) Lizard karyotypes from the Galapagos islands: chromosomes in phylogeny and evolution.Breviora 441, 1–31.

    Google Scholar 

  • Peacock WJ, Dennis ES, Elizur A, Calaby JH (1981) Repeated DNA sequences and kangaroo phylogeny.Aust J Biol Sci 34, 325–340.

    PubMed  Google Scholar 

  • Porter CA, Hamilton MJ, Sites JW, Jr, Baker RJ (1991) Location of ribosomal DNA in chromosomes of squamate reptiles: systematic and evolutionary implications.Herpetologica 47, 271–280.

    Google Scholar 

  • Porter CA, Sites JW, Jr (1986) Evolution ofSceloporus grammicus complex (Sauria: Iguanidae) in central Mexico: Population cytogenetics.Syst Zool 35, 334–358.

    Google Scholar 

  • Porter CA, Haiduk MW, de Queiroz K (1994) Evolution and phylogenetic significance of ribosomal gene location in chromosomes of squamate reptiles.Copeia in press.

  • Quinn JS, Guglich E, Seutin Get al. (1992) Characterization and assessment of an avian repetitive DNA sequence as an icterid phylogenetic marker.Genome 35, 155–162.

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989)Molecular Cloning: A Laboratory Manual. Second edition. Cold Spring Harbor Laboratory Press, Plainview, New York.

    Google Scholar 

  • Schmidtke J, Epplen JT (1980) Sequence organization of animal nuclear DNA.Hum Genet 55, 1–18.

    PubMed  Google Scholar 

  • Singer M, Berg P (1991)Genes and Genomes. Mill Valley, California: University Science Books.

    Google Scholar 

  • Sites JW, Jr, Bickham JW, Haiduk MW, Iverson JB (1979) Banded karyotypes of six taxa of kinosternid turtles.Copeia 1979, 692–698.

    Google Scholar 

  • Soma M, Beçak ML, Beçak W (1975) Estudo comparativo do conteúdo de DNA em 12 espécies de lacertílios.Ciência e Cultura 27, 1324–1327.

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis.J Mol Biol 94, 503–517.

    PubMed  Google Scholar 

  • Van Den Bussche RA (1991) Phylogenetic analysis of restriction site variation in the ribosomal DNA complex of New World leaf-nosed bat genera.Syst Zool 40, 420–432.

    Google Scholar 

  • Van Den Bussche RA (1992) Restriction-site variation and molecular systematics of New World leaf-nosed bats.J Mammal 73, 29–42.

    Google Scholar 

  • Van Den Bussche RA, Baker RJ, Wichman HA, Hamilton MJ (1993) Molecular phylogenetics of stenodermatini bat genera: Congruence of data from nuclear and mitochondrial DNA.Mol Biol Evol 10, 944–959.

    PubMed  Google Scholar 

  • Wiens, JJ (1993) Phylogenetic relationships of phrynosomatid lizards and monophyly of theSceloporus group.Copeia 1993, 287–299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porter, C.A. Organization and chromosomal location of repetitive DNA sequences in three species of squamate reptiles. Chromosome Res 2, 263–273 (1994). https://doi.org/10.1007/BF01552720

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01552720

Key words

Navigation