Advertisement

Measurement of stress-strain relationship and stress relaxation in various synthetic ligaments

  • R. Kdolsky
  • R. Reihsner
  • R. Schabus
  • R. J. Beer
Originals Biomechanics

Abstract

In an experimental study various synthetic augmentation devices for knee ligament surgery were tested in a servo-mechanical universal tensile testing machine under uniaxial loading. Two tests were done to elucidate the mechanical behaviour: stress relaxation and stress-strain relationship. Regarding the point of failure or rupture, the strongest ligament was the Trevira et 1800 N, followed by the 8-mm-wide Kennedy LAD at 1720 N. At a working load of 500 N the Gore-tex band, the Trevira, and the Kennedy-LAD stretched by between 2% and 3%. For synthetic augmentation in repair of proximally ruptured anterior cruciate ligaments we recommend a synthetic ligament that reaches failure point at a load of more than 1000 N with an alteration in length of less than 5%. Otherwise, stress protection of the biological reconstruction in full extension will be impossible. The requisite criteria were fulfilled by the Trevira, Kennedy-LAD and Gore-tex synthetic ligaments.

Key words

Knee ligament surgery Synthetic augmentation devices Mechanical behaviour Uniaxial loading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ascherl R, Siebels W, Kobor B, Geißdörfer K, Schmeller ML, Lichti H, Fraefel E (1985) Vergleichende experimentelle Untersuchungen an biologischen Materialien zum Ersatz des vorderen Kreuzbandes. Unfallchirurgie 11: 278PubMedGoogle Scholar
  2. 2.
    Contzen H (1985) Materialtechnische Voraussetzungen und biologische Grundlagen für den alloplastischen Kreuzbandersatz. Unfallchirurgie 11: 242PubMedGoogle Scholar
  3. 3.
    Engebretsen L, Benum P, Fasting O, Molster A, Strand T (1990) A prospective, randomized study of three surgical techniques for treatment of acute ruptures of the anterior cruciate ligament. Am J Sports Med 18: 585PubMedGoogle Scholar
  4. 4.
    Kdolsky R, Kwasny O, Schabus R (1993) Synthetic augmented repair of proximal ruptures of the anterior cruciate ligament. Long-term results of 66 patients. Clin Orthop 295: 183PubMedGoogle Scholar
  5. 5.
    Schabus R (1988) Die Bedeutung der Augmentation für die Rekonstrukton des vorderen Kreuzbandes. Acta Chir Austriaca Suppl 76Google Scholar
  6. 6.
    Sherman MF, Lieber L, Bonamo JR, Podesta L, Reiter I (1991) The long-term follow-up of primary anterior cruciate ligament repair. Defining a rationale for sugmentation. Am J Sports Med 19: 243PubMedGoogle Scholar
  7. 7.
    Sommerlath K, Lysholm J, Gillquist J (1991) The long-term course after treatment of acute anterior cruciate ligament ruptures. A 9- to 16-year follow-up. Am J Sports Med 19: 156PubMedGoogle Scholar
  8. 8.
    Woo SL-Y, Gomez MA, Seguchi Y, Endo CM, Akeson WH (1983) Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. Orthop Res 1: 22Google Scholar
  9. 9.
    Woo SL-Y, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19: 399PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • R. Kdolsky
    • 1
  • R. Reihsner
    • 2
  • R. Schabus
    • 1
  • R. J. Beer
    • 3
  1. 1.Department of TraumatologyUniversity of viennaAustria
  2. 2.Departement of Plastic and Reconstructive SurgeryUniversity of ViennaAustria
  3. 3.Institute of Strength of MaterialUniversity of TechnologyViennaAustria

Personalised recommendations