Skip to main content
Log in

Hydrophobic characterization of powder Some criteria and experimental evidence

  • Original Contributions
  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

The immersion times, contact angle and also the partition between solvents, have been measured experimentally for a series of powdered solids. According to experimental results obtained here a characterization comparison of the solids studied is undertaken with other solids taken as model systems. Thus, a classification of substances is proposed in terms of qualitative differences in free energies of immersion in water

  1. 1.

    Solids having a positive free energy of immersion or solids intrinsically non-wetted by water. This group would comprise the substances normally referred to as hydrophobic, i. e. paraffins, organic polymers etc., which could be ordered in terms of their critical surface tension.

  2. 2.

    Solids having a negative free energy of immersion. This group can be subdivided in two further groups according to the affinity for a specific phase (partition experiments).- Substances concentrated in organic phase;- Substances concentrated in aqueous phase.

Zusammenfassung

Für eine Reihe pulverförmiger Festkörper wurde die Immersionszeit, der Benetzungswinkel und die Verteilung zwischen verschiedenen Lösungsmitteln gemessen. Aus den Ergebnissen wird eine Klassifizierung vorgeschlagen, welche qualitative Unterschiede in der Freien Energie der Immersion in Wasser berücksichtigt:

  1. 1.

    Festkörper mit einer positiven Immersionsenergie. Zu dieser Gruppe gehören die normalerweise als hydrophob bezeichneten Stoffe, wie z. B. Paraffin und organische Polymere.

  2. 2.

    Stoffe mit einer negativen Freien Immersionsenergie, die sich nach dem Verteilungsverhalten in zwei Untergruppen gliedern lassen: a) Stoffe, die sich in der organischen Phase anreichern, und b) Stoffe, die sich in der wässerigen Phase anreichern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Good, W. R., J. Coll. Interf. Sci.44, 63 (1973).

    Google Scholar 

  2. Chessick, J., A. C. Zettlemoyer, Advan. Catal.11, 263 (1959);A. C. Zettlemoyer, Ind. Eng. Chem.57, (2), 27 (l965).

    Google Scholar 

  3. Wade, W. M., N. Hackerman, J. Phys. Chem.64, 1196 (1960); ibid65, 1681 (l961); Advan. Chem. Ser.43, 222 (l964);R. L. Venable, W. H. Wade, N. Hackerman, J. Phys. Chem.69, 317 (1965).

    Google Scholar 

  4. Slabough, W. H., J. Phys. Chem.63, 1333 (1959).

    Google Scholar 

  5. Skewis, J. D., A. C. Zetilemoyer, in: Proc. of third Int. Congr. on Surface Activity, vol. II, p. 401 (1960).

    Google Scholar 

  6. Fowkes, F. M., J. Phys. Chem.57, 98 (1953).

    Google Scholar 

  7. Benitez, R., S. Contreras, J. Goldfarb, J. of Coll. Interface Sci.36, 146 (1971).

    Google Scholar 

  8. Parfitt, G. D., J. Oil Col. Chem. Assoc.50, 888 (1967);R. Caggiano, D. D. Eley, M. J. Hey, Proc. R. Soc. London, A.340, 173 (1974).

    Google Scholar 

  9. Bruil, H. G., J. J. van Aartsen, Colloid & Polymer Sci.252, 32 (1974).

    Google Scholar 

  10. Kapar, H., J. Büchi, T. W. Schwarz, K. Steiger-Trippi, Pharm. Acta Helv.37, 40 (1962).

    Google Scholar 

  11. Laskowski, J., J. A. Kitchener, J. of Coll. Interface Sci.29, 670 (l969).

    Google Scholar 

  12. Washburn, E. V., Phys. Rev.1, 273 (1921);E. K. Rideal, Phil. Magazine44, 1152 (1922);J. T. Davies, E. K. Rideal, Interf. Phenomena, 423 (New York 1963).

    Google Scholar 

  13. Skekeley, J., A. W. Neumann, Y. K. Chuang, J. Coll. Interf. Sci.35, 273 (1971).

    Google Scholar 

  14. Good, W. R., J. Coll. Interface Sci.42, 473 (1973).

    Google Scholar 

  15. Young, T., in: Miscellaneous Works, vol. I, 418 (London 1855); see alsoV. K. Adam, Nature180, 809 (1957).

    Google Scholar 

  16. Laskowski, J., personal communication.

  17. Matijevic, E., R. H. Ottewill, J. Colloid Sci.13, 242 (1958);R. W. Horne, E. Matijevic, R. H. Ottewill, J. W. Weymouth, Kolloid Z.161, 50 (1958);J. Rubio, J. Goldfarb, J. Coll. Interf. Sci.36, 289 (1971).

    Google Scholar 

  18. Rupprecht, H., Kolloid-Z. u. Z. Polymer249, 1127 (1971).

    Google Scholar 

  19. Laskowski, J., J. Iskra, J. IMM Trans.79, C6 (1970).

    Google Scholar 

  20. Bernett, M. K., V. A. Zisman, J. Phys. Chem.63, 5241 (1959);E. G. Shrafim, V. A. Zisman, J. Phys. Chem.64, 519 (1960);V. A. Zisman, Advan. Chem. Ser.43, 1 (1964).

    Google Scholar 

  21. Dann, J. R., J. Coll. Interface Sci.32, 302–320 (1970).

    Google Scholar 

  22. Harkins, V. D., H. K. Livingston, J. Chem. Phys.10, 342 (1942).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 figures and 5 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garbsva, S., Contreras, S. & Goldfarb, J. Hydrophobic characterization of powder Some criteria and experimental evidence. Colloid & Polymer Sci 256, 241–250 (1978). https://doi.org/10.1007/BF01550554

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01550554

Keywords

Navigation