Skip to main content
Log in

Diquark clustering and the neutron charge radius

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

We show that a quark-diquark model previously introduced to explainSU(6) violations in quasi-two-body reactions is also able to accomodate a (quantitative) interpretation of the negative charge radius of the neutron, provided one uses appropriate hypotheses for the confinements (c.q. sizes) of the quarks and diquarks involved. They effectively imply the existence of a nucleon core (i.e. a massive two-quark state of substantial spatial clustering) with zero spin and zero isospin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zralek, W.J. Metzger, R.T. Van de Walle, C. Dionisi, A. Gurtu, M. Mazzucato, B. Foster. Phys. Rev. D19, 820 (1979)

    Google Scholar 

  2. M. Ida, R. Kobayashi: Prog. Theor. Phys.36, 846 (1966)

    Google Scholar 

  3. D.B. Lichtenberg, L.J. Tassie, P.J. Keleman: Phys. Rev.167, 1535 (1968); J. Carroll, D.B. Lichtenberg, J. Franklin: Phys. Rev.174, 1681 (1968); D.B. Lichtenberg: Phys. Rev.178, 2197 (1969)

    Google Scholar 

  4. R.F. Feynman: Photon-Hadron Interaction. New York: Benjamin, 1972

    Google Scholar 

  5. F. E. Close: Phys. Lett.43B, 422 (1973)

    Google Scholar 

  6. J. F. Gunion, D. E. Soper: Phys. Lett.73B, 189 (1978)

    Google Scholar 

  7. See e.g. R. E. Cutkosky, R. E. Hendrick: Phys. Rev. D.16, 2902 (1977) for anSU(6)-conserving modelwith diquark clustering

    Google Scholar 

  8. On the other hand for the other key assumption of the quasi-two-body interpretation (namely the diquarkspectator assumption) spatial quark clustering appears a logical starting point

  9. For more details see R. T. Van de Walle: Subnuclear Physics Series. Zichichi, A. (ed.), Vol. 17. Pointlike Structure inside and outside Hadrons (1979) (to be published)

  10. P.J. Litchfield: Proc. of Topical Conf. on Baryon Resonances, Oxford, p. 339 (1976)

  11. R. J. Cashmore: Proc. of the 19th International Conference on High Energy Physics, Tokyo, p. 811 (1978); G. R. Goldstein, J. Maharana: RHEL-preprint RL-79-048

  12. N. Isgur: Acta Phys. Pol B8, 1081 (1977)

    Google Scholar 

  13. T. Hyashi, T. Karino, T. Yanaguda: Prog. Theor. Phys.60, 1066 (1978)

    Google Scholar 

  14. S. Brodsky “Color symmetry and quark confinement”. Tran Than Van (ed.). Moriond Meeting 1977

  15. L. F. Abbot, E. L. Berger, R. Blankenbecler, G. L. Kane: Phys. Lett.88B, 157 (1979)

    Google Scholar 

  16. B. Andersson, G. Gustafson, G. Ingelman: Phys. Lett.58B, 417 (1979)

    Google Scholar 

  17. I. Schmidt, R. Blankenbecler: Phys. Rev. D16, 1318 (1977)

    Google Scholar 

  18. K. Johnson, C. Thorn: Phys. Rev. D13, 1934 (1976); G. Preparata, K. Szego: Nuovo Cimento47 A, 303 (1978)

    Google Scholar 

  19. S. D. Drell, H. Quinn, M. Weinstein: SLAC-report (to be published)

  20. R. D. Carlitz, B. D. Creamer: Phys. Lett.84B, 215 (1979)

    Google Scholar 

  21. H. J. Lipkin: Phys. Lett.35B, 534 (1971)

    Google Scholar 

  22. N. Isgur, G. Karl: Phys. Lett.74B, 353 (1978); Phys. Rev. D18, 4187 (1978); Phys. Rev D19, 2653 (1979); N. Isgur, G. Karl, R. Koniuk: Phys. Rev. Lett.41, 1269 (1978); R. Koniuk, N. Isgur: Phys. Rev. D21, 1868 (1980)

    Google Scholar 

  23. Z. Dzimbowski, W. J. Metzger, M. Zralek: University of Nijmegen, Internal Report HEN-191, 1980 (to be published)

  24. R. D. Carlitz, S. D. Ellis, R. Savit: Phys. Lett.68B, 443 (1977)

    Google Scholar 

  25. L. M. Seghal: Phys. Lett.53B, 106 (1974); F. E. Close, F. Halzen, D. M. Scott: Phys. Lett.68B, 447 (1977)

    Google Scholar 

  26. J. Kuti, V. F. Weisskopf: Phys. Rev. D4, 3418 (1971); O. Nachtmann: Nucl. Phys. B38, 397 (1972)

    Google Scholar 

  27. E. Hirsch, U. Karshon, H. J. Lipkin, Y. Eisenberg, A. Shapiro, G. Yekutieli, J. Goldberg: Phys. Lett.36B, 139 (1971); J. C. Kluyver, R. Blokzijl, G. G. G. Massaro, G. F. Wolters, R. Armenteros, R. J. Hemingway, S. O. Holmgren, P. Grossman, P. R. Lamb, J. Wells: Nucl. Phys. B140, 141 (1978)

    Google Scholar 

  28. Another (welcome) consequence of the above assumption is that it immediately explains the absence of the {20} baryon multiplet and the dominance of the 0+, 1, 2+, 3... etcSU(6) multiplets. See [1]. To explain the so-called minimal spectrum, i.e. {56} with only 0+, 2+... and {70} with only 1, 3,..., requires one more additional assumption, namely that of a sizeable exchange force between quark and diquark. See D. B. Lichtenberg: Phys. Rev.178, 2197 (1968). Although the above findings apply for strictSU(6) they will remain approximately true in any situation where theSU(6) symmetry is not too strongly broken in its internal quantum-numbers

    Google Scholar 

  29. There exists a relation between factorizability of the spatial parts of a wave function andSU(6) breaking. See P.M. Fishbane, J.S. McCarthy, J.V. Noble, J.S. Trefil: Phys. Rev. D11, 1338 (1975)

    Google Scholar 

  30. V. E. Krohn, G. R. Ringo: Phys. Rev. D9, 1305 (1973); L. Koester et al.: Phys. Rev. Lett.36, 1201 (1976)

    Google Scholar 

  31. F. Borkowski, P. Peuser, G. G. Simon, V. H. Walther, R. D. Wensling. Nucl. Phys. A222, 269 (1974)

    Google Scholar 

  32. The assumptions (21) can only be approximately true. In principle they disagree with the assumption that the odd-quark coupling to the diquark is different for theI=0 and for theI=1 diquark. A priori one should therefore also expect different odd-quark confinement quantities. However, the difference between 53° and 45° is presumably small enough so as not to exclude the approximation contained in assumptions (21)

  33. To be more precise with Γ=53°, and assumptions (21) and (24), the Eqs. (22) and (23) require\(\left\langle {r^2 } \right\rangle _{D_O } \simeq 0.07{\rm{ }}R^2\) at a 1 SD level

  34. The quasi-two-body results of [1] also remain valid. In terms ofinternal variables the diquark-quark wave functions used were complete descriptions of the baryon states considered anyway, even in the absence of real dynamical diquark clustering. In the latter situation it is primarily the diquark spectator assumption which becomes questionable. However as noted already in the analysis of [1] the spectator assumption could in principle have two (distinct) dynamical origins; one is real spatial clustering; the other a ‘filter’ resulting from the limitation of looking at peripheral quasi-two-body reactions only. The charged nucleonradii results suggest that the first mechanism is present in theI=0 diquark case while the latter one is at work for theI=1 two-quark states

  35. M. Zralek: University of Nijmegen, Internal Report HEN-190, 1979 (unpublished)

  36. F. Gunion: Phys. Rev. D10, 242 (1974)

    Google Scholar 

  37. See. e.g. P. Collins, F. Gault: Phys. Lett.73B, 330 (1978); H. I. Miettinen, G. H. Thomas: Fermilab-Pub-79/53-THY

    Google Scholar 

  38. R. Carlitz: Phys. Lett.58B, 845 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dziembowski, Z., Metzger, W.J. & Van de Walle, R.T. Diquark clustering and the neutron charge radius. Z. Phys. C - Particles and Fields 10, 231–238 (1981). https://doi.org/10.1007/BF01549731

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01549731

Keywords

Navigation