Skip to main content
Log in

Wave propagation from a spherical cavity imbedded in an elasto-plastic medium

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Summary

The problem of an impulsively applied pressure acting on the surface of a spherical cavity imbedded in an elasto-plastic medium governed by a bilinear stress-strain law is considered. The problem is solved by using a certain iterative finite difference scheme which prevents almost all the numerical oscillations which usually occur in the region behind the discontinuity at the elastic-plastic boundary, when a standard finite difference scheme is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Hopkins, Dynamic Expansion of Spherical Cavity in Metals,Progress in Sold Mechanics, 1, North-Holland Publishing Co., Amsterdam, 1960.

    Google Scholar 

  2. M. B. Friedman, H. H. Bleich and R. Parnes, Spherical Elastic Plastic Shock Propagation,J. Eng. Mech. Div. Am. Soc. Civ. Eng., 91 (1965) 189–203.

    Google Scholar 

  3. S. K. Garg, Spherical Elastic-Plastic Waves,Z. angew. Math. Phys., 19 (1968) 243–251.

    Google Scholar 

  4. S. K. Garg, Numerical Solutions for Spherical Elastic-Plastic Wave PropagationZ. angew. Math. Phys., 19 (1968) 778–787.

    Google Scholar 

  5. N. Davids, P. K. Mehta and O. T. Johnson, “Spherical Elasto-Plastic in Materials”, Materials, Behavior of Materials under Dynamic Loading,Am. Soc. Mech. Engrs., (1966) 125–137.

  6. C. H. Mok, Dynamic Expansion of a Spherical Cavity in an Elastic, Perfectly Plastic Material,J. Appl. Mech., 35 (1968) 372–378.

    Google Scholar 

  7. L. Fox,Numerical solution of Two-Point Boundary Problems, Oxford (1957).Appl. Math., 7 (1954) 159–193.

  8. P. C. Chadwick and L. W. Morland, The Starting Problem for Spherical Elastic-Plastic Waves of Small Amplitude,J. Mech. Phys. Solids, 17 (1969) 419–436.

    Google Scholar 

  9. C. Y. Yang, Strain Hardening Effects on Unloading Spherical Waves in an Elastic Plastic Medium,Int. J. Solids Structures, 6 (1970) 757–772.

    Google Scholar 

  10. H. R. Aggarwal, A. M. Soldate, J. F. Hook and J. Miklowitz, Bilinear Theories in Plasticity and an Application to Two-Dimensional Wave Propagation,J. Appl. Mech., 31 (1964) 181–188.

    Google Scholar 

  11. R. Hill,The Mathematical Theory of Plasticity, Clarendon Press, Oxford England (1950).

    Google Scholar 

  12. H. Jeffreys, On the Cause of Oscillatory Movement in Seismograms,Monthly Not. Roy. Astr. Soc. Geophys. Suppl., 2 (1931) 407–16.

    Google Scholar 

  13. R. D. Richtmyer and K. W. Morton,Difference Methods for Initial Value Problems, Interscience, New York (1967).

    Google Scholar 

  14. S. Abarbanel and G. Zwas, An Iterative Finite Difference Method for Hyperbolic Systems,Math. Comp., 23 (1969) 549–565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aboudi, J. Wave propagation from a spherical cavity imbedded in an elasto-plastic medium. J Eng Math 5, 279–287 (1971). https://doi.org/10.1007/BF01548245

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01548245

Keywords

Navigation