Gauge theory of gravity
II. Reciprocity and confinement
Article
- 41 Downloads
- 3 Citations
Abstract
General relativity is formulated in the framework of Yang-Mills theory whose gauge group isO(3, 2). This theory allows the global topological charge of spin without breaking Bianchi identity. β function in the renormalization group equation is negative and the confinement of gravity is expected. The confinement radius is, however, actually infinite and we can read off the relation that the average mass density of the present universe is exactly equal to the critical value ρ c (t)=6H2(t)/K2.
Keywords
Field Theory General Relativity Elementary Particle Gauge Theory Quantum Field Theory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.T. Fukuyama: Gauge theory of gravitation and nodal singularity, June 1980, to appear in Nuovo CimentoGoogle Scholar
- 2.R. Utiyama: Phys. Rev.101, 1597 (1956)Google Scholar
- 2a.T.W.B. Kibble: J. Math. Phys.3, 608 (1962)Google Scholar
- 2b.T. Nakano, K. Hayashi: Prog. Theor. Phys.38, 491 (1967)Google Scholar
- 3.C.N. Yang, R. Mills: Phys. Rev.96, 191 (1954)Google Scholar
- 4.S.W. MacDowell, F. Mansouri: Phys. Rev. Lett.38, 739 (1977)Google Scholar
- 4a.A. Inomata, M. Trinkala: Phys. Rev.D19, 1665 (1978)Google Scholar
- 5.P.C. West: Phys. Lett.76B, 569 (1978)Google Scholar
- 5a.K.S. Stelle, P.C. West: Phys. Rev.D21, 1466 (1980)Google Scholar
- 6.T.W.B. Kibble in [2]Google Scholar
- 7.P.A.M. Dirac: Ann. Math.36, 657 (1935)Google Scholar
- 7a.F. Gursey: Lecture in group theoretical concepts and methods in elementary particle physics, ed. F. Gursey. New York: Gordon and Breach 1962Google Scholar
- 8.G. Sterman, P.K. Townsend, P. von Niewenhuizen: Phys. Rev.D17, 1501 (1978)Google Scholar
- 8a.T. Fukuyama: Nucl. Phys.B153, 467 (1979)Google Scholar
- 9.C.N. Yang: Phys. Rev. Lett.33, 445 (1974)Google Scholar
- 9a.T.T. Wu, C.N. Yang: Phys. Rev.D12, 3845 (1975); Nucl. Phys.B107 365 (1976)Google Scholar
- 9b.A. Trautman: J. Theor. Phys.16, 561 (1977)Google Scholar
- 9c.T. Eguchi, P.B. Gilkey, A.J. Hanson: Gravitation, gauge theories and differential geometry, to appear in Phys. Rep.Google Scholar
- 10.Y. Aharonov, D. Bohm: Phys. Rev.115, 485 (1959)Google Scholar
- 11.P.A.M. Dirac: Phil. Mag.47, 1158 (1924); General theory of relativity. New York: Wiley 1975Google Scholar
- 12.N. Cabibbo, E. Ferrari: Nuovo Cimento23, 1147 (1962)Google Scholar
- 13.S. Weinberg: Phys. Rev.B135, 1049 (1964)Google Scholar
- 13a.T.W.B. Kibble: Lecture in high energy physics and elementary particles, p. 885. Vienna: IAEA 1965Google Scholar
- 14.R.P. Feynman: Acta. Phys. Polon.24, 697 (1963)Google Scholar
- 14a.T. Fukuyama: Nuovo CimentoA56, 405 (1980)Google Scholar
- 15.K.S. Stelle: Phys. Rev.D16, 953 (1977)Google Scholar
- 16.T.D. Lee, G.C. Wick: Nucl. Phys.B9, 209 (1969); Phys. Rev.D2, 1033 (1970)Google Scholar
- 16a.E. Tomboulis: Phys. Lett.70B, 361 (1977)Google Scholar
- 17.N. Nakanishi: Phys. Rev.D3, 811 (1971); Phys. Rev.D5, 1968 (1972)Google Scholar
- 18.H.D. Politzer: Phys. Rev. Lett.30, 1346 (1973)Google Scholar
- 18a.D.J. Gross, F.A. Wilczek: Phys. Rev. Lett.30, 1343 (1973)Google Scholar
- 19.See for instance, C.W. Misner, K.S. Thorne, J.A. Wheeler: Gravitation, chap. 29. Oxford: Freeman 1973Google Scholar
- 20.E. Witten: Talk presented at first workshop on grand unification, HUTP-80/A031Google Scholar
- 21.S. Coleman, F.D. Luccia: Phys. Rev.D21, 3305 (1980)Google Scholar
- 21a.A. Guth, E. Weinberg: Columbia University preprint CUTP-183 (1980)Google Scholar
- 21b.M.B. Einhorn, K. Sato: preprint NORDITA-80/37 (1980)Google Scholar
Copyright information
© Springer-Verlag 1981