Skip to main content
Log in

Location and layout planning

A survey

  • Invited Review
  • Published:
Operations-Research-Spektrum Aims and scope Submit manuscript

Abstract

This paper gives a review on quantitative methods for microeconomic location planning which can be subdivided into facility location and layout planning. Depending on different objectives and restrictions, there is a large variety of problems, especially in the field of facility location planning. Basic models arising in discrete and continuous facility location planning (e.g., warehouse location, center, location routing, competitive location problems), as well as corresponding solution methods, are presented. Generalized models and recent developments in these fields are outlined. Within layout planning, the quadratic assignment problem and graph-theoretic concepts are considered.

Zusammenfassung

Der Beitrag gibt einen Überblick über quantitative Ansätze zur Lösung betriebswirtschaftlicher Standortplanungsprobleme. Es wird zwischen betrieblicher und innerbetrieblicher Standortplanung unterschieden. Abhängig von der zu verfolgenden Zielsetzung und von den zu beachtenden Nebenbedingungen ergibt sich v.a. bei der betrieblichen Standortplanung eine Vielzahl unterschiedlicher Probleme. Zu den wichtigsten Problemstellungen der diskreten und kontinuierlichen betrieblichen Standortplanung (z.B. Warehouse Location-, Zentren-, Location Routing- und Competitive Location-Probleme) werden Grundmodelle beschrieben und Hinweise auf neue Lösungsverfahren gegeben. Auch verallgemeinerte Modelle und neueste Entwicklungen werden skizziert. Im Rahmen der innerbetrieblichen Standortplanung (Layoutplanung) stellen wir das quadratische Zuordnungsproblem und verschiedene graphentheoretische Ansätze sowie geeignete Lösungsverfahren vor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

1: Introductory literature, books, reviews

  • Brandeau ML, Chiu SS (1989) An overview of representative problems in location research. Mgmt Sci 35:645–674

    Google Scholar 

  • Daskin M (1995) Network and discrete location: Models, algorithms, and applications. Wiley, New York et al.

    Google Scholar 

  • Domschke W, Drexl A (1985) Location and layout planning: An international bibliography. Springer, Berlin et al.

    Google Scholar 

  • Domschke W, Drexl A (1996) Logistik: Standorte (Location science; in German), 4th edn., Oldenbourg, München-Wien

    Google Scholar 

  • Drezner Z (ed) (1992) Locational decisions. Annals of OR 40, Baltzer, Basel

    Google Scholar 

  • Drezner Z (ed) (1995) Facility location: A survey of applications and methods. Springer, New York et al.

    Google Scholar 

  • Francis RL, McGinnis LF, White JA (1983) Locational analysis. Eur J Opl Res 12:220–252

    Google Scholar 

  • Francis RL, McGinnis LF, White JA (1992) Facility layout and location: An analytical approach. 2nd edn., Prentice-Hall, Engle-wood Cliffs

    Google Scholar 

  • Grabow B, Henckel D, Hollbach-Grömig B (1995): Weiche Standortfaktoren. Kohlhammer, Stuttgart et al.

    Google Scholar 

  • Greenhut ML (1995) Location Economics I. Elgar Publ. Lim., Aldershot Hants (U.K.)

    Google Scholar 

  • Handler GY, Mirchandani PB (1979) Location on networks. MIT Press, Cambridge, MA

    Google Scholar 

  • Isard W (1956) Location and space economy, a general theory relating to industrial location, market areas, land use, trade, and urban structure. MIT Press, Cambridge, MA

    Google Scholar 

  • Love RF, Morris JG, Wesolowski GO (1988) Facilities location — models & methods. North-Holland, New York et al.

    Google Scholar 

  • Meiler RD, Gau K-Y (1995) The facility layout problem: A review of recent and emerging research. Dept. of Industr. Engg., Auburn University, Auburn, AL 36849-5346

    Google Scholar 

  • Mirchandani PB, Francis RL (eds) (1990) Discrete location theory. Wiley, New York et al.

    Google Scholar 

  • Thisse JF, Zoller HG (eds) (1983) Locational analysis of public facilities. North-Holland, Amsterdam

    Google Scholar 

  • Tompkins JA, White JA (1984) Facilities planning. Wiley, New York et al.

    Google Scholar 

  • Wäscher G (1982) Innerbetriebliche Standortplanung bei einfacher und mehrfacher Zielsetzung. Gabler, Wiesbaden

    Google Scholar 

  • Weber A (1909) Über den Standort der Industrien, 1. Teil: Reine Theorie des Standortes, Tübingen

2: Discrete location planning

  • Beasley JE (1985) A note on solving large p-median problems. Eur J Opl Res 21:270–273

    Google Scholar 

  • Beasley JE (1988) An algorithm for solving large capacitated warehouse location problems. Eur J Opl Res 33:314–325

    Google Scholar 

  • Beasley JE (1990) OR-Library: Distributing test problems by electronic mail. J Opl Res Soc 44:1069–1072

    Google Scholar 

  • Benati S, Laporte G (1994) Tabu search algorithms for the (r∥Xp)-medianoid and (r∥p)-centroid problems. Loc Sci 2:193–204

    Google Scholar 

  • Berman O, Einav D, Handler G (1991) The zone-constrained location problem on a network. Eur J Opl Res 53:14–24

    Google Scholar 

  • Berman O, Jaillet P, Simchi-Levi D (1995) Location-routing problems with uncertainty. In: Drezner Z (ed) Facility location: A survey of applications and methods. Springer, New York et al., Chapter 18

    Google Scholar 

  • Berman O, Simchi-Levi D (1988) Finding the optimal a priori tour and location of a traveling salesman with nonhomogeneous customers. Transp Sci 22:148–154

    Google Scholar 

  • Bilde O, Krarup J (1977) Sharp lower bounds and efficient algorithms for the simple plant location problem. Annals of Discr Math 1:79–97

    Google Scholar 

  • Christofides N, Beasley JE (1983) Extensions to a Lagrangean relaxation approach for the capacitated warehouse location problem. Eur J Opl Res 12:19–28

    Google Scholar 

  • Conn AR, Cornuejols G (1990) A projection method for the uncapacitated facility location problem. Math Progr 46:273–298

    Google Scholar 

  • Cornuejols G, Sridharan R, Thizy JM (1991) A comparison of heuristics and relaxations for the capacitated plant location problem. Eur J Opl Res 50:280–297

    Google Scholar 

  • Crainic TG, Dejax P, Delorme L (1989) Models for multimode multicommodity location problems with interdepot balancing requirements. Annals of OR 18:279–302

    Google Scholar 

  • Crainic TG, Delorme L, Dejax P (1993) A branch-and-bound method for multicommodity location with balancing requirements. Eur J Opl Res 65:368–382

    Google Scholar 

  • Domschke W, Drexl A (1985) ADD heuristic's starting procedures for capacitated plant location models. Eur J Opl Res 21:47–53

    Google Scholar 

  • Domschke W, Drexl A (1996) Logistik: Standorte (Location science; in German), 4th edn., Oldenbourg, München-Wien

    Google Scholar 

  • Eiselt HA, Laporte G, Thisse J-F (1993) Competitive location models: A framework and bibliography. Transp Sci 27:44–54

    Google Scholar 

  • Erlenkotter D (1978) A dual-based procedure for uncapacitated facility location. Ops Res 26:992–1009

    Google Scholar 

  • Francis RL, Lowe TJ (1992) On worst-case aggregation analysis for network location problems. Annals of OR 40:229–246

    Google Scholar 

  • Francis RL, McGinnis LF, White JA (1992) Facility layout and location: An analytical approach. 2nd edn., Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Galvao RD (1993) The use of Lagrangean relaxation in the solution of uncapacitated facility location problems. Loc Sci 1:57–79

    Google Scholar 

  • Gao L-L, Robinson Jr. EP (1992) A dual-based optimization procedure for the two-echelon uncapacitated facility location problem. Naval Res Log 39:191–212

    Google Scholar 

  • Gao L-L, Robinson Jr EP (1994) Uncapacitated facility location: General solution procedure and computational experience. Eur J Opl Res 76:410–427

    Google Scholar 

  • Guignard M, Kim S, Spielberg K (1987) Multi-commodity nonlinear distribution planning. Methods of OR 58:191–202

    Google Scholar 

  • Hakimi SL (1964) Optimum locations of switching centers and the absolute centers and medians of a graph. Ops Res 12:450–459

    Google Scholar 

  • Hakimi SL (1990) Locations with spatial interactions: Competitive locations and games. In: Mirchandani PB, Francis RL (eds), Chapter 9

  • Halpern J, Maimon O (1982) Algorithms for the m-center problems: A survey. Eur J Opl Res 10:90–99

    Google Scholar 

  • Hammerschmid R (1990) Entwicklung technisch-wirtschaftlich optimierter regionaler Entsorgungsalternativen. Physica, Heidelberg

    Google Scholar 

  • Handler GY (1990) p-center problems. In: Mirchandani PB, Francis RL (eds), pp 305–347

  • Hansen PH, Hegedahl B, Hjortkjaer S, Obel B (1994) A heuristic solution to the warehouse location-routing problem. Eur J Opl Res 76:111–127

    Google Scholar 

  • Holmberg K (1990) On the convergence of cross decomposition. Math Progr 47:269–296

    Google Scholar 

  • Hotelling H (1929) Stability in competition. Econ J 39:41–57

    Google Scholar 

  • Jacobsen SK (1983) Heuristics for the capacitated plant location model. Eur J Opl Res 12:253–261

    Google Scholar 

  • Jaeger M, Goldberg J (1994) A polynomial algorithm for the equal capacity p-center problem on trees. Transp Sci 28:167–175

    Google Scholar 

  • Kariv O, Hakimi SL (1979a) An algorithmic approach to network location problems. I: The p-centers. SIAM J Appl Math 37:513–538

    Google Scholar 

  • Kariv O, Hakimi SL (1979b) An algorithmic approach to network location problems. II: The p-medians. SIAM J Appl Math 37:539–560

    Google Scholar 

  • Kincaid RK (1992) Good solutions to discrete noxious location problems via metaheuristics. Annals of OR 40:265–281

    Google Scholar 

  • Klincewicz JG, Luss H (1987) A dual-based algorithm for multiproduct uncapacitated facility location. Transp Sci 21:198–206

    Google Scholar 

  • Klose A (1993) Das kombinatorische p-Median-Modell und Erweiterungen zur Bestimmung optimaler Standorte. Thesis, Universität St. Gallen

  • Körkel M (1989) On the exact solution of large-scale simple plant location problems. Eur J Opl Res 39:157–173

    Google Scholar 

  • Laporte G (1988) Location-routing. In: Golden BL, Assad AA (eds) Vehicle routing: Methods and studies. North-Holland, Amsterdam et al., pp 163–197

    Google Scholar 

  • Miller TC, Friesz TL, Tobin RL (1995) Equilibrium facility location on networks. Springer, Berlin et al.

    Google Scholar 

  • Minieka E (1970) The m-center problem. SIAM Rev 12:138–139

    Google Scholar 

  • Minieka E (1981) A polynomial time algorithm for finding the absolute center of a network. Networks 11:351–355

    Google Scholar 

  • Mirchandani B (1990) The p-median problem and generalizations. In: Mirchandani PB, Francis RL (eds), pp 55–117

  • Mirchandani PB, Francis RL (eds) (1990) Discrete location theory. Wiley, New York et al.

    Google Scholar 

  • Moon S (1989) Application of generalized Benders decomposition to a nonlinear distribution system design problem. Naval Res Log 36:283–295

    Google Scholar 

  • Schildt B (1994) Strategische Produktions- und Distributionsplanung. Deutscher Universitäts-Verlag, Wiesbaden

    Google Scholar 

  • Serra D, ReVelle C (1995) Competitive location in discrete space. In: Drezner Z (ed) Facility location: A survey of applications and methods. Springer, New York et al., Chapter 16

    Google Scholar 

  • Sforza A (1990) An algorithm for finding the absolute center of a network. Eur J Opl Res 48:376–390

    Google Scholar 

  • Simchi-Levi D (1991) The capacitated traveling salesmen location problem. Transp Sci 25:9–18

    Google Scholar 

  • Shulman A (1991) An algorithm for solving dynamic capacitated plant location problems with discrete expansion sizes. Ops Res 39:423–436

    Google Scholar 

  • Sridharan R (1995) The capacitated plant location problem. Eur J Opl Res 87:203–213

    Google Scholar 

  • Tansel BC, Francis RL, Lowe TJ (1983) Location on networks: A survey. Part II: Exploiting the tree network structure. Mgmt Sci 29:498–511

    Google Scholar 

  • Tcha D-W, Lee BI (1984) A branch-and-bound algorithm for the multi-level uncapacitated facility location problem. Eur J Opl Res 18:35–43

    Google Scholar 

  • Tüshaus U (1994) Approximating transportation costs in location problems: Some practical approaches. Working paper, University of St. Gallen

  • van Roy TJ (1986) A cross decomposition algorithm for capacitated facility location. Ops Res 34:145–163

    Google Scholar 

  • Voß S (1996) A reverse elimination approach for the p-median problem. Studies in Locational Analysis 8:49–58

    Google Scholar 

3: Continuous location planning

  • Aneja YP, Parlar M (1994) Algorithms for Weber facility location in the presence of forbidden regions and/or barriers to travel. Transp Sci 28:70–76

    Google Scholar 

  • Appa GM, Giannikos I (1994) Is linear programming necessary for single facility location with maximin of rectilinear distance? J Opl Res Soc 45:97–107

    Google Scholar 

  • Aykin T (1995a) The hub location and routing problem. Eur J Opl Res 83:200–219

    Google Scholar 

  • Aykin T (1995b) Networking policies for hub-and-spoke systems with application to the air transportation system. Transp Sci 29:201–221

    Google Scholar 

  • Aykin T, Babu AJG (1987) Constrained large-region multifacility location problems. J Opl Res Soc 38:241–252

    Google Scholar 

  • Berens W, Körung F-J (1983) Das Schätzen von realen Entfernungen bei der Warenverteilungsplanung mit gebietspaarspezifischen Umwegfaktoren. OR Spektrum 5:67–75

    Google Scholar 

  • Berman O, Jaillet P, Simchi-Levi D (1995) Location-routing problems with uncertainty. In: Drezner Z (ed) (1995a), Chapter 18

  • Brimberg J, Dowling PD, Love RF (1994) The weighted one-two norm distance model: Empirical validation and confidence interval estimation. Loc Sci 2:91–100

    Google Scholar 

  • Brimberg J, Love RF (1993) Global convergence of a generalized iterative procedure for the minisum location problem with lp distances. Ops Res 41:1153–1163

    Google Scholar 

  • Brimberg J, Mehrez A (1994) Multi-facility location using a maximin criterion and rectangular distances. Loc Sci 2:11–19

    Google Scholar 

  • Chen R, Handler GY (1987) Relaxation method for the solution of the minimax location-allocation problem in Euclidean space. Naval Res Log 34:775–788

    Google Scholar 

  • Cooper L (1972) The transportation-location problem. Ops Res 20:94–108

    Google Scholar 

  • Dowling PD, Love RF (1990) Floor layouts using a multifacility location model. Naval Res Log 37:945–952

    Google Scholar 

  • Domschke W, Drexl A (1996) Logistik: Standorte (Location science; in German), 4th edn., Oldenbourg, München-Wien

    Google Scholar 

  • Drezner T (1995) Competitive facility location in the plane. In: Drezner Z (ed) (1995 a), Chapter 13

  • Drezner Z (ed) (1995a) Facility location: A survey of applications and methods. Springer, New York et al.

    Google Scholar 

  • Drezner Z (1995b) Replacing discrete demand with continuous demand. In: Drezner Z (ed) (1995a), Chapter 2

  • Eiselt HA, Laporte G (1989) Competitive spatial models. Eur J Opl Res 39:231–242

    Google Scholar 

  • Eiselt HA, Laporte G, Thisse J-F (1993) Competitive location models: A framework and bibliography. Transp Sci 27:44–54

    Google Scholar 

  • Foulds LR, Hamacher HW (1993) Optimal bin location and sequencing in printed circuit board assembly. Eur J Opl Res 66:279–290

    Google Scholar 

  • Francis RL, McGinnis LF, White JA (1992) Facility layout and location: An analytical approach. 2nd edn., Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Frenk JBC, Melo MT, Zhang S (1994) A Weiszfeld method for a generalized lp distance minisum location model in continuous space. Loc Sci 2:111–127

    Google Scholar 

  • Hamacher HW (1995) Mathematische Lösungsverfahren für planare Standortprobleme. Vieweg, Wiesbaden

    Google Scholar 

  • Hamacher HW, Nickel S (1995) Restricted planar location problems and applications. Naval Res Log 42:967–992

    Google Scholar 

  • Liu CM, Kao RL, Wang AH (1994) Solving location-allocation problems with rectilinear distance by simulated annealing. J Opl Res Soc 45:1304–1315

    Google Scholar 

  • Love RF, Juel H (1982) Properties and solution methods for large location-allocation problems. J Opl Res Soc 33:443–452

    Google Scholar 

  • Love RF, Morris JG (1972) Modelling inter-city road distance by mathematical functions. OR Quart 23:61–71

    Google Scholar 

  • Love RF, Morris JG, Wesolowski GO (1988) Facilities location — models & methods. North-Holland, New York et al.

    Google Scholar 

  • Love RF, Walker JH (1994) An empirical comparison of block and round norms for modelling actual distances. Loc Sci 2:21–43

    Google Scholar 

  • Miehle W (1958) Link-length minimization in networks. Ops Res 6:232–243

    Google Scholar 

  • Morris JG (1981) Convergence of the Weiszfeld algorithm for the Weber problem using generalized “distance” functions. Ops Res 29:37–48

    Google Scholar 

  • O'Kelly ME (1992) A clustering approach to the planar hub location problem. Annals of OR 40:339–353

    Google Scholar 

  • Plastria F (1995) Continuous location problems. In: Drezner Z (ed) (1995a), Chapter 11

  • Rosen JB, Xue GL (1993) On the convergence of a hyperboloid approximation procedure for the perturbed Euclidean multifacility location problem. Ops Res 41:1164–1171

    Google Scholar 

  • Sherali HD, Tuncbilek CH (1992) A squared-Euclidean distance location-allocation problem. Naval Res Log 39:447–469

    Google Scholar 

  • Weber A (1909) Über den Standort der Industrien, 1. Teil: Reine Theorie des Standortes, Tübingen

  • Weiszfeld E (1937) Sur le point pour lequel la somme des distances de n points donnes est minimum. Tohoku Math J 43:355–386

    Google Scholar 

4: Layout planning

  • Armour GC, Buffa ES (1963) A heuristic algorithm and simulation approach to relative location of facilities. Mgmt Sci 9:294–309

    Google Scholar 

  • Battiti R, Tecchiolli G (1994) The reactive tabu search. ORSA J on Computing 6:126–140

    Google Scholar 

  • Böite A (1994) Modelle und Verfahren zur innerbetrieblichen Standortplanung. Physica, Heidelberg

    Google Scholar 

  • Boswell SG (1992) TESSA — A new greedy heuristic for the facility layout planning. Int J Prod Res 30:1957–1968

    Google Scholar 

  • Bozer YA, Meiler RD, Erlebacher SJ (1994) An improvement-type layout algorithm for single and multiple-floor facilities. Mgmt Sci 40:918–932

    Google Scholar 

  • Brandt H-P (1989) Rechnergestützte Layoutplanung von Industriebetrieben. TÜV Rheinland, Köln

    Google Scholar 

  • Buffa ES, Armour GC, Vollmann TE (1964) Allocating facilities with CRAFT. Harvard Business Rev 42:136–156

    Google Scholar 

  • Burkard RE (1990) Locations with spatial interactions: The quadratic assignment problem. In: Mirchandani RB, Francis RL (eds) Discrete location theory. Wiley, New York et al., pp 387–437

    Google Scholar 

  • Burkard RE, Karisch S, Rendl F (1991) QAPLIB — a quadratic assignment problem library. Eur J Opl Res 55:115–119

    Google Scholar 

  • Burkard RE, Rendl F (1984) A thermodynamically motivated simulation procedure for combinatorial optimization problems. Eur J Opl Res 17:169–174

    Google Scholar 

  • Connolly DT (1990) An improved annealing scheme for the QAP. Eur J Opl Res 46:93–100

    Google Scholar 

  • Deshpande SD, Krishnamoorthy S, Deshpande VB (1988) Computer-aided site layout for construction projects — A graph theoretic approach. OMEGA 16:612–615

    Google Scholar 

  • Domschke W, Drexl A (1985) Location and layout planning: An international bibliography. Springer, Berlin et al.

    Google Scholar 

  • Domschke W, Drexl A (1996) Logistik: Standorte (Location science; in German), 4th edn., Oldenbourg, München-Wien

    Google Scholar 

  • Eades P, Foulds LR, Giffin JW (1982) An efficient heuristic for identifying a maximum weight planar subgraph. In: Billington EJ et al. (eds) Combinatorial Mathematics IX. Lecture Notes in Mathematics, Vol. 952, Springer, Berlin et al., pp 239–251

    Google Scholar 

  • Fleurent C, Ferland JA (1994) Genetic hybrids for the quadratic assignment problem. In: Pardalos PM, Wolkowicz H (eds) Quadratic assignment and related problems. DIMACS Series in Discr. Math, and Theoret. Comp. Sci., American Math. Society, Providence, pp 173–187

    Google Scholar 

  • Foulds LR, Gibbons PB, Giffin JW (1985) Facilities layout adjacency determination: An experimental comparison of three graph theoretic heuristics. Ops Res 33:1091–1106

    Google Scholar 

  • Foulds LR, Robinson DF (1978) Graph theoretic heuristics for the plant layout problem. Int J Prod Res 16:27–37

    Google Scholar 

  • Foulds LR, Robinson DF (1979) Construction properties of combinatorial deltahedra. Discr Appl Math 1:75–87

    Google Scholar 

  • Francis RL, McGinnis LF, White JA (1992) Facility layout and location: An analytical approach. 2nd edn., Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Giffin JW (1984) Graph theoretic techniques for facilities layout. Ph.D. Thesis, University of Canterbury, New Zealand

    Google Scholar 

  • Giffin JW, Foulds LR (1987) Facilities layout generalized model solved by n-boundary shortest path heuristics. Eur J Opl Res 28:382–391

    Google Scholar 

  • Gilmore PC (1962) Optimal and suboptimal algorithms for the quadratic assignment problem. SIAM J 10:305–313

    Google Scholar 

  • Glover F, Pesch E (1993) Efficient facility layout planning. Working Paper, University of Colorado, Boulder

    Google Scholar 

  • Goetschalckx M (1992) An interactive layout heuristic based on hexagonal adjacency graphs. Eur J Opl Res 63:304–321

    Google Scholar 

  • Gomory RE, Hu TC (1961) Multi-terminal network flows. SIAM J 9:551–570

    Google Scholar 

  • Green RH, Al-Hakim L (1985) A heuristic for facilities layout planning. OMEGA 13:469–474

    Google Scholar 

  • Hadley SW, Rendl F, Wolkowicz H (1992) A new lower bound via projection for the quadratic assignment problem. Math of OR 17:727–739

    Google Scholar 

  • Hasan M, Osman IH (1995) Local search algorithms for the maximal planar layout problem. Int Transact of Opl Res 2:89–106

    Google Scholar 

  • Hassan MMD, Hogg GL (1991) On constructing a block layout by graph theory. Int J Prod Res 29:1263–1278

    Google Scholar 

  • Heragu S (1992) Recent models and techniques for solving the layout problem. Eur J Opl Res 57:136–144

    Google Scholar 

  • Heragu SS (1997) Design, location, and layout of facilities. PWS Publ. Company, Boston, MA (forthcoming)

    Google Scholar 

  • Heragu S, Kusiak A (1988) Machine layout problem in flexible manufacturing systems. Ops Res 36:258–268

    Google Scholar 

  • Heragu S, Alfa A (1992) Experimental analysis of simulated annealing based algorithms for the layout problem. Eur J Opl Res 57:190–202

    Google Scholar 

  • Hu TC (1969) Integer programming and network flows. Addison-Wesley, Menlo Park et al.

    Google Scholar 

  • Huntley CL, Brown DE (1991) A parallel heuristic for quadratic assignment problems. Comp & Ops Res 18:275–289

    Google Scholar 

  • Jajodia S, Minis I, Harhalakis G, Proth J (1992) CLASS: Computerized layout solutions using simulated annealing. Int J Prod Res 30:95–108

    Google Scholar 

  • Jünger M, Mutzel P (1993) Solving the maximum weight planar subgraph problem by branch and cut. In: Rinaldi G, Wolsey L (eds) Proceedings of the third conference on integer programming and combinatorial optimization (IPCO), pp 479–492

  • Kelly JP, Laguna M, Glover F (1994) A study of diversification strategies for the quadratic assignment problem. Comp & Ops Res 21:885–893

    Google Scholar 

  • Kim J-Y, Kim Y-D (1995) Graph theoretic heuristics for unequalsized facility layout problems. OMEGA 23:391–401

    Google Scholar 

  • Koopmans TC, Beckmann MJ (1957) Assignment problems and the location of economic activities. Econometrica 25:53–76

    Google Scholar 

  • Kusiak A, Heragu SS (1987) The facility layout problem. Eur J Opl Res 29:229–251

    Google Scholar 

  • Laursen PS (1993a) Simple approaches to parallel branch and bound. Parallel Computing 19:143–152

    Google Scholar 

  • Laursen PS (1993b) Simulated annealing for the QAP — Optimal tradeoff between simulation time and solution quality. Eur J Opl Res 69:238–243

    Google Scholar 

  • Lee RC, Moore JM (1967) CORELAP — Computerized Relationship Layout Planning. J Ind Engg 18:195–200

    Google Scholar 

  • Leung J (1992) A new-graph theoretic heuristic for facility layout. Mgmt Sci 38:594–605

    Google Scholar 

  • Maniezzo V, Dorigo M, Colorni A (1995) Algodesk: An experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem. Eur J Opl Res 81:188–204

    Google Scholar 

  • Mans B, Mautor T, Roucairol C (1995) A parallel depth first search branch and bound algorithm for the quadratic assignment problem. Eur J Opl Res 81:617–628

    Google Scholar 

  • Meller RD, Bozer YA (1996) A new simulated annealing algorithm for the facility layout problem. Int J Prod Res 34:1675–1692

    Google Scholar 

  • Meller RD, Gau K-Y (1995) The facility layout problem: A review of recent and emerging research. Dept. of Industr. Engg., Auburn University, Auburn, AL 36849-5346

    Google Scholar 

  • Merker J, Wäscher G (1997) Two new heuristic algorithms for the maximal planar layout problem. OR Spektrum 19:131–137

    Google Scholar 

  • Montreuil B, Ratliff HD (1989) Utilizing cut trees as design skeletons for facility layout. IIE Transact 21:136–143

    Google Scholar 

  • Montreuil B, Ratliff HD, Goetschalckx M (1987) Matching based interactive facility layout. IIE Transact 19:271–279

    Google Scholar 

  • Montreuil B, Venkatradri U, Ratliff HD (1993) Generating a layout from a design skeleton. IIE Transact 25:3–15

    Google Scholar 

  • Nissen V (1994) Evolutionäre Algorithmen. Deutscher Universitäts-Verlag, Wiesbaden

    Google Scholar 

  • Pardalos PM, Rendl F, Wolkowicz H (1994) The quadratic assignment problem: A survey and recent developments. In: Pardalos PM, Wolkowicz H (eds) Quadratic assignment and related problems. DIMACS Series in Discr. Math. and Theoret. Comp. Sci., American Math. Society, Providence, pp 1–42

    Google Scholar 

  • Paulli J (1993) A computational comparison of simulated annealing and tabu search applied to the quadratic assignment problem. In: Vidal RVV (ed) Applied simulated annealing. Springer, Berlin et al., pp 85–102

    Google Scholar 

  • Pesch E, Voß S (eds) (1995) Applied local search. Special issue 2/3 of OR Spektrum, Vol. 17

  • Reeves CR (ed) (1993) Modern heuristic techniques for combinatorial problems. Blackwell, Oxford

    Google Scholar 

  • Rinsma F, Giffin JW, Robinson DF (1990) Orthogonal floorplans from maximal planar graphs. Environment and Planning B: Planning and Design 17:57–71

    Google Scholar 

  • Seppänen JJ, Moore JM (1975) String processing algorithms for plant layout problems. Int J Prod Res 13:239–254

    Google Scholar 

  • Skorin-Kapov J (1990) Tabu search applied to the quadratic assignment problem. ORSA J on Computing 2:33–45

    Google Scholar 

  • Skorin-Kapov J (1994) Extension of a tabu search adaptation to the quadratic assignment problem. Comp & Ops Res 21:855–865

    Google Scholar 

  • Sly D (1995) Computerized facilities design and management: An overview. IIE Solutions 27(8):43–51

    Google Scholar 

  • Sly DP, Grajo E, Montreuil B (1996) Factory layout and planning software: Part 3. IIE Solutions 28(7):18–25

    Google Scholar 

  • Taillard ED (1991) Robust taboo search for the quadratic assignment problem. Parallel Computing 17:443–455

    Google Scholar 

  • Taillard ED (1995) Comparison of iterative searches for the quadratic assignment problem. Loc Sci 3:87–105

    Google Scholar 

  • Tam KY (1992a) Genetic algorithms, function optimization, and facility layout design. Eur J Opl Res 63:322–346

    Google Scholar 

  • Tam KY (1992b) A simulated annealing algorithm for allocating space to manufacturing cells. Int J Prod Res 30:63–87

    Google Scholar 

  • Tate DM, Smith AE (1995a) A genetic approach to the quadratic assignment problem. Comp & Ops Res 22:73–83

    Google Scholar 

  • Tate DM, Smith AE (1995b) Unequal-area facility layout by genetic search. IIE Transactions 27:465–472

    Google Scholar 

  • Voß S (1994) Intelligent search. Thesis, Technische Hochschule Darmstadt (forthcoming in Springer)

    Google Scholar 

  • Voß S (1995) Solving quadratic assignment problems using the reverse elimination method. In: Nash SG, Sofer S (eds) The impact of emerging technologies on Computer Science and Operations Research. Kluwer, Dordrecht, pp 281–296

    Google Scholar 

  • Wäscher G (1982) Innerbetriebliche Standortplanung bei einfacher und mehrfacher Zielsetzung. Gabler, Wiesbaden

    Google Scholar 

  • Wäscher G, Chamoni P (1987) MICROLAY: An interactive computer program for factory layout planning on microcomputers. Eur J Opl Res 31:185–193

    Google Scholar 

  • Wäscher G, Merker J (1997) A comparative evaluation of heuristics for the adjacency problem in facility layout planning. Int J Prod Res 35:447–466

    Google Scholar 

  • Welgama PS, Gibson PR (1996) An integrated methodology for automating the determination of layout and materials handling system. Int J Prod Res 34:2247–2264

    Google Scholar 

  • Welgama PS, Gibson PR, Al-Hakim LAR (1994) Facilities layout: A knowledge-based approach for converting a dual graph into a block layout. Int J Prod Econ 33:17–30

    Google Scholar 

  • White DJ (1994) Strengthening Gilmore's bound for the quadratic assignment problem. Eur J Opl Res 77:126–140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Domschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domschke, W., Krispin, G. Location and layout planning. OR Spektrum 19, 181–194 (1997). https://doi.org/10.1007/BF01545586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01545586

Key words

Schlüsselwörter

Navigation