Skip to main content
Log in

Expression of a methotrexate-resistant dihydrofolate reductase gene by transformed hematopoietic cells of mice

  • Published:
Somatic Cell Genetics

Abstract

DNA-mediated gene transfer was used to introduce DNA from a methotrexate-resistant mouse fibroblast cell line into mouse bone marrow cells. This cell line contained a methotrexate-resistant dihydrofolate reductase, active at 10−4 M methotrexate, which was electrophoretically separable from the wild-type mouse enzyme. Transformed hematopoietic cells were returned to irradiated mice and selected in vivo by methotrexate administration. Some recipients of transformed marrow cells expressed the electrophoretically distinct, methotrexate-resistant dihydrofolate reductase in hematopoietic cells. These observations suggest that successful transformation of marrow stem cells to methotrexate resistance is accomplished by insertion of a dihydrofolate reductase gene coding for a mutant enzyme that is highly resistant to methotrexate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Hakala, M.T., Zakresewski, S.F., and Nichol, C.H. (1961).J. Biol. Chem. 236:952–958.

    PubMed  Google Scholar 

  2. Harding, N.G.L., Martelli, M.F., and Huennekens, F.M. (1970).Arch. Biochem. Biophys. 137:295–296.

    PubMed  Google Scholar 

  3. Biedler, J.L., Albrecht, A.M., and Spengler, B.A. (1978).Eur. J. Cancer 14:41–49.

    PubMed  Google Scholar 

  4. Alt, F.W., Kellems, R.E., Bertino, J.R., and Schimke, R.T. (1978).J. Biol. Chem. 253:1357–1370.

    PubMed  Google Scholar 

  5. Chang, S.E., and Littlefield, J.W. (1976).Cell 7:391–396.

    PubMed  Google Scholar 

  6. Kellems, R.E., Alt, F.W., and Schimke, R.T. (1976).J. Biol. Chem. 251:6987–6993.

    PubMed  Google Scholar 

  7. Schimke, R.T., Kaufman, R.J., Alt, F.W., and Kellems, R.E. (1978).Science 202:1051–1055.

    PubMed  Google Scholar 

  8. Cline, M.J., Stang, H., Mercola, K., Morse, L., Ruprecht, R., Browne, J., and Salser, W. (1980).Nature 284:422–425.

    PubMed  Google Scholar 

  9. Kellems, R.E., Morhenn, V.B., Pfendt, E.V., Alt, F.W., and Schimke, R.T. (1979).J. Biol. Chem. 254:309–318.

    PubMed  Google Scholar 

  10. Ford, C.E. (1966). InTissue Grafting and Radiation, (eds.) Micklem, H.S., and Doutit, J.F. (Academic Press, New York).

    Google Scholar 

  11. Bacchetti, S., and Graham, F.L. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:1590–1594.

    PubMed  Google Scholar 

  12. Wigler, M., Pellicer, A., Silverstein, S., and Axel, R. (1978).Cell 14:725–731.

    PubMed  Google Scholar 

  13. Bertino, J.R., Donohue, D.M., Simmons, B., Gabrio, B.W., Silber, R., and Huennekens, F.M. (1963).J. Clin. Invest. 42:466:475.

    Google Scholar 

  14. Salser, W., Tong, B.D., Stang, H.D., Browne, J., Mercola, K., Bar-Eli, M., and Cline, M.J. (1980). InCellular and Molecular Regulation of Hemoglobin Switching, Vol. 2, (eds.) Stamatoyannopoulos, G., and Nienhuis, A. (Grune & Stratton, New York), pp. 313–334.

    Google Scholar 

  15. Bar-Eli, M., and Cline, M.J. (1982). InCold Spring Harbor Symposium on Production and Insertion of Mammalian Vectors (in press).

  16. Bar-Eli, M., Mercola, K.E., Slamon, D.J., Mauritzson, N., Stang, H.D., and Cline, M.J. (1982).J. Cell Physiol. (Suppl.)1:213–217.

    Google Scholar 

  17. Haber, D.A., Beverley, S.M., Kiely, M.L., and Schimke, R.T. (1981).J. Biol. Chem. 256:9501–9506.

    PubMed  Google Scholar 

  18. Lowry, O.H., Roberts, N.R., and Kapphahn, J.I. (1956).J. Biol. Chem. 224:1047–1064.

    Google Scholar 

  19. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951).J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  20. Hanggi, U.J., and Littlefield, J.W. (1974).J. Biol. Chem. 249:1390–1397.

    PubMed  Google Scholar 

  21. Gupta, R.S., Flintoff, W.F., and Siminovitch, L. (1977).Can. J. Biochem. 55:445–452.

    PubMed  Google Scholar 

  22. Hiebert, M., Gauldie, J., and Hillcoat, B.L. (1972).Anal. Biochem. 46:433–437.

    PubMed  Google Scholar 

  23. Laemmli, U.K. (1970).Nature 227:680–685.

    PubMed  Google Scholar 

  24. Blakley, R.L. (1969).The Biochemistry of Folic Acid and Related Pteridines (Wiley-Intersience, New York, N.Y.), pp. 139–187.

    Google Scholar 

  25. Flintoff, W.F., Davidson, S.V., and Siminovitch, L. (1976).Somat. Cell. Genet. 2:245–261.

    PubMed  Google Scholar 

  26. Lee, F., Mulligan, R., Berg, P., and Ringold, G. (1981).Nature 294:228–231.

    PubMed  Google Scholar 

  27. Wigler, M., Perucho, M., Kurtz, D., Dana, S., Pellicer, A., Axel, R., and Silverstein, S. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:3567–3570.

    PubMed  Google Scholar 

  28. Carr, F.J., Medina, W.D., and Bertino, J.R. (1982).Clin Res. 30:569A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar-Eli, M., Stang, H.D., Mercola, K.E. et al. Expression of a methotrexate-resistant dihydrofolate reductase gene by transformed hematopoietic cells of mice. Somat Cell Mol Genet 9, 55–67 (1983). https://doi.org/10.1007/BF01544048

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01544048

Keywords

Navigation