Acta Neurochirurgica

, Volume 116, Issue 1, pp 38–43 | Cite as

Isoflurane in the management of status epilepticus after surgery for lesion around the motor area

  • T. Sakaki
  • K. Abe
  • T. Hoshida
  • T. Morimoto
  • S. Tsunoda
  • K. Okuchi
  • S. Miyamoto
  • H. Furuya
Clinical Articles


When conventional treatment for status epilepticus fails, general anaesthesia is recommended. We present our experience with isoflurane, an inhalational anaesthetic, in the management of four patients with status epilepticus which occurred soon after surgery for motor area lesion. The seizures were controlled with relatively small concentrations of isoflurane. Hypotension, the only adverse effect of isoflurane, was managed easily with the use of dopamine in physiological saline. Although status epilepticus occurring soon after surgery is transient, it carries a risk of persistent brain damage if active treatment is not instituted promptly. Isoflurane general anaesthesia may be recommended to control it in the intensive neurosurgical care.


Isoflurane status epilepticus motor area postoperative complication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aminoff MJ, Simon RP (1980) Status epilepticus: causes, clinical features and consequences in 98 patients. Am J Med 69: 657–666Google Scholar
  2. 2.
    Baden JM, Rice SA (1986) Metabolism and toxicity of inhaled anesthetics. In: Miller RD (eds) Anesthesia. Churchill Livingstone, New York, pp 701–744Google Scholar
  3. 3.
    Delgado-Escueta AV, Wasterlain C, Trieman DM, Porter RJ (1982) Management of status epilepticus. N Engl J Med 306: 1337–1340Google Scholar
  4. 4.
    Eger EI, Stevens WC, Cromwell TH (1971) The electroencephalogram in mean anesthetized with Forane. Anesthesiology 35: 504–508Google Scholar
  5. 5.
    Egar EI (1981) Isoflurane: a review. Anesthesiology 55: 559–576Google Scholar
  6. 6.
    Gallagher TJ, Galindo A, Richey ET (1978) Inhibition of seizure activity during enflurane anesthesia. Anesth Analg 57: 130–132Google Scholar
  7. 7.
    Ito BM, Sato S, Kufta CV, Tran D (1987) Effect of isoflurane and enflurane on the electrocorticogram (ECOG) of epileptic patients (abstract). Neurology [Suppl] 37: 91Google Scholar
  8. 8.
    Jennett WB (1969) Early traumatic epilepsy. Lancet 1: 1023–1026Google Scholar
  9. 9.
    Kassell NF, Hitchon PW, Gerk MK, Sokoll MD, Hill TR (1980) Alterations in cerebral blood flow, oxygen metabolism, and electrical activity produced by high dose sodium thiopental. Neurosurgery 7: 598–603Google Scholar
  10. 10.
    Kofke WA, Snider MT, Young PSK, Ramer JC (1985) Prolonged low flow isoflurane anesthesia for status epilepticus. Anesthesiology 62: 653–656Google Scholar
  11. 11.
    Kofke WA, Young RS, Davis P, Woelfel SK, Gray L, Johnson D, Gelb A, Meeke R, Warner DS, Pearson KS, Gibson JR, Koncelik J, Wessel HB (1989) Isoflurane for refractory status epilepticus: a clinical series. Anesthesiology 71: 653–659Google Scholar
  12. 12.
    Lowenstein DH, Aminoff MJ, Simon RP (1988) Barbiturate anesthesia in the treatment of status epilepticus. Neurology 38: 395–400Google Scholar
  13. 13.
    Lowe HJ, Ernst EA (1981) The quantitative practice of anesthesia. Williams and Wilkins, Baltimore/LondonGoogle Scholar
  14. 14.
    Marshall BE, Wollman H (1980) General anesthetics. In: Gilman AG, Gilman LS (eds) The pharmacological basis of therapeutics, 5th Ed. Macmillan, New York, pp 276–299Google Scholar
  15. 15.
    Meekre RI, Soifer BE, Gelf AW (1989) Isoflurane for the management of status epilepticus. DICP 23: 579–581Google Scholar
  16. 16.
    Meldrum BS, Brierly JB (1973) Prolonged epileptic seizures in primates: ischemic cell change and its relation to ictal physiological events. Arch Neurol 28: 10–17Google Scholar
  17. 17.
    Michenfelder JD (1974) The interdependency of cerebral function and metabolic effects following massive doses of thiopental in the dog. Anesthesiology 41: 231–236Google Scholar
  18. 18.
    Newberg LA, Milde JH, Michenfelder JD (1983) The cerebral metabolic effects of isoflurane at and above concentration which suppress cortical electrical activity. Anesthesiology 59: 23–29Google Scholar
  19. 19.
    Opitz A, Oberwetter D (1979) Enflurane or halothane anesthesia for patients with cerebral convulsive disorders? Acta Anesthesiol Scand [Suppl] 71: 43–47Google Scholar
  20. 20.
    Opitz A, Marschall M, Degan R, Koch D (1983) General anesthesia in patients with epilepsy and status epilepticus. In: Delgado-Escueta AV, Wasterlain CG, Treiman DM, Porter RJ (eds) Mechanism of brain damage and treatment. Raven Press, New York, pp 531–535Google Scholar
  21. 21.
    Orlowski JP, Erenberg G, Hans L (1984) Hypothermia and barbiturate coma for refractory status epilepticus. Crit Care Med 12: 362–372Google Scholar
  22. 22.
    Oshima E, Urabe N, Shingu K, Mori K (1985) Anticonvulsant actions of enflurane on epilepsy models in cats. Anesthesiology 63: 29–40Google Scholar
  23. 23.
    Pagni CA (1990) Posttraumatic epilepsy. Incidence and Prophylaxis. Acta Neurochir (Wien) [Suppl] 50: 28–47Google Scholar
  24. 24.
    Pauca AL, Dripps RD (1973) Clinical experience with isoflurane (Forane). Br J Anaesth 45: 697–703Google Scholar
  25. 25.
    Rashkin MC, Youngs C, Penovich P (1987) Pentobarbital treatment of refractory status epilepticus. Neurology 37: 500–503Google Scholar
  26. 26.
    Rosen I, Soederberg M (1975) Electroencephalographic activity in children under enflurane anesthesia. Acta Anesthesiol Scand 19: 361–369Google Scholar
  27. 27.
    Rougier A (1990) The epileptic focus versus the pathological focus. Acta Neurochir (Wien) [Suppl] 50: 1–5Google Scholar
  28. 28.
    Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219: 316–318Google Scholar
  29. 29.
    Steen PA, Michenfelder JD (1979) Neurotoxicity of anesthetics. Anesthesiology 50: 437–453Google Scholar
  30. 30.
    Triner L, Vulliemoz Y, Verosky M, Woo S-Y (1980) Action of volatile anesthetics in brain. In: Fink BR (ed) Molecular Mechanisms of Anesthesia, Vol 2. Raven Press, New York, pp 229–239Google Scholar
  31. 31.
    Welty TE, Kreal RL (1985) Pentobarbital coma for treating intractable seizures in a neonate. Clin Pharm 4: 330–32Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • T. Sakaki
    • 1
  • K. Abe
    • 2
  • T. Hoshida
    • 1
  • T. Morimoto
    • 1
  • S. Tsunoda
    • 1
  • K. Okuchi
    • 3
  • S. Miyamoto
    • 3
  • H. Furuya
    • 4
  1. 1.Departments of NeurosurgeryNara Medical UniversityNara
  2. 2.Department of AnesthesiologyOsaka Police HospitalOsakaJapan
  3. 3.Department of Emergent MedicineNara Medical UniversityNara
  4. 4.Department of AnesthesiologyNara Medical UniversityNara

Personalised recommendations