Skip to main content
Log in

Solidification of an aqueous salt solution in the presence of thermosolutal convection

Gefrieren einer Wasser-Salzlösung unter dem Einfluß temperatur- und konzentrationsinduzierter Konvektion

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The freezing of water-salt (sodium chloride) solution on a vertical wall of a rectangular cavity has been studied experimentally. The influence of thermally and solutally driven natural convection on the freezing process has been examined. The spatial and temporal variations of the temperature in the solid, mush and liquid regions have been recorded. By selectively withdrawing liquid samples and in conjunction with a refractometer, the concentration variation has been studied. The thermosolutal convective flow strongly influenced the rate of freezing. Due to the continuous rejection of salt, a solutally stratified stable region developed at the bottom of the test cell. The thickness of this region increased with the progress of freezing and it was separated from the remaining bulk liquid, where convective flow was present, by a thin interface.

Zusammenfassung

Es wurde der Gefriervorgang einer Wasser-Salzlösung (H2O-NaCl) an der senkrechten Wand einer rechtekigen Kammer experimentell untersucht, und zwar unter dem Einfluß der durch Temperatur- und Konzentrationsunterschiede ausgelösten Freikonvektion. Die mitgeteilten Ergebnisse betreffen die räumlichen und zeitlichen Temperaturänderungen im Fest-, Misch- und Flüssigkeitsgebiet. Die Konzentrationsänderungen wurden durch selektive Entnahme von Flüssigkeitsproben in Verbindung mit refraktometrischen Messungen ermittelt. Das Gefriergeschehen hängt wesentlich von der durch Temperatur- und Konzentrationsunterschiede gesteuerten Konvektionsströmung ab. Infolge ständiger Anreicherung der Flüssigkeit mit Salz entwickelte sich eine konzentrationsstabilisierte Schicht am Boden der Versuchskammer, die mit zunehmender Eisbildung anwuchs und vom konvektiv beeinflußten Flüssigkeitsgebiet durch eine dünne Grenzschicht getrennt blieb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher, K. M.: The effects of fluid low on the solidification of industrial castings and ingots, Physico-Chemical Hydrodynamics, 2, (1981), 311–326

    Google Scholar 

  2. Kurz, W.; Fisher, D. J.: Fundamentals of Solidification. Switzerland: Aldermamsdorf, Trans. Tech. Publications (1984)

  3. Ostrach, S.: Fluid mechanics in crystal growth — the 1982 freeman scholar lecture. J. Fluids Engineering 105 (1983) 5–20

    Google Scholar 

  4. Lane, G. A.: Solar Heat Storage: Latent Heat Material Vol. 1, CRC Press, Boca Raton, Florida (1983)

    Google Scholar 

  5. Oreper, G. M. and Szekely, J.: Heat and fluid flow phenomena in weld pools. J. Fluid Mechanics 147 (1984) 53–79

    Google Scholar 

  6. Fang, L. J., Cheung, F. B., Linehan, J. H., and Pedersen, D. R.: Selective freezing of a dilute salt solution on a cold ice surface. ASME J. Heat Transfer 106 (1984) 385–393

    Google Scholar 

  7. Huppert, H. E.; Sparks, R. S. J.: Double-diffusive convection due to crystallization of magma. Annual Review of Earth and Planetary Science, Weitherill, G. W., et al., ed., Annual Reviews Inc., Palo Alto, California 12 (1984) 11–37

    Google Scholar 

  8. Loper, D. E.: Structure of the inner core boundary. Geophysical and Astrophysical Fluid Dynamics 25, (1983) 139–155

    Google Scholar 

  9. Huppert, H. E.; Turner, J. S.: Ice blocks melting into a salinity gradient. J. Fluid Mechanics 100 (1980) 367–384

    Google Scholar 

  10. Viskanta, R.: Phase change heat transfer, Solar Heat Storage: Latent Heat Materials (Lane, G. A. ed.), CRC Press, Boca Raton, Florida 1 (1983) 153–222

    Google Scholar 

  11. Backerud, L.; Chalmers, B.: Some aspects of dendritic growth in binary alloys: Study of the aluminum-copper system. Trans. of the Metallurgical Society of AIME 245, (1969) 309–318

    Google Scholar 

  12. Morando, R.; Biloni, H.; Cole, G. S.; Bolling, G. F.: The development of macrostructure in ingots of increasing size. Metallurgical Trans. 1 (1970) 1407–1412

    Google Scholar 

  13. Streat, N.; Weinberg, F.: Macrosegregation during solidification resulting from density difference in the liquid. Metallurgical Trans. 5 (1974) 2539–2548

    Google Scholar 

  14. Kou, S.; Poirier, D. R.; Flemings, M. C.: Macrosegregation in rotated remelted ingots. Metallurgical Trans. B, 9b (1978) 711–719

    Google Scholar 

  15. Nguyen Thi, H.; Billia, B.; Jamgotchian, H.: Influence of thermosolutal convection on the solidification front during upwards solidification. J. Fluid Mechanics 204 (1989) 581–597

    Google Scholar 

  16. Copley, S. M.; Giamei, A. F.; Johnson, S. M.; Hornbecker, M. F.: The origin of freckles in unidirectionally solidified castings. Metallurgical Trans 1 (1970), 2193–2204

    Google Scholar 

  17. Szekely, J.; Jassal, A. S.: An experimental and analytical study of the solidification of binary dendritic system. Metallurgical Trans. B, 9 b (1978) 389–398

    Google Scholar 

  18. Beckermann, C.; Viskanta, R.: Double-diffusive convection during dendritic solidification of a binary mixture. Physico Chemical Hydrodynamics 10 (1988) 195–213

    Google Scholar 

  19. Bennon, W. D.; Incropera, F. P.: A continuum model for momentum, heat and species transport in binary, solid-liquid phase change systems-II. Application to solidification in a rectangular cavity. Int. J. Heat and Mass Transfer 30 (1987) 2171–2187

    Google Scholar 

  20. Christenson, M. S.; Incropera, F. P.: Experiments on solidification of an aqueous sodium carbonate Solution in a horizontal cylindrical annulus. ASME J. Heat Transfer 111 (1989) 998–1005

    Google Scholar 

  21. Huppert, H. E.; Worster, M. G.: Dynamic solidification of a binary melt. Nature 314 (1985) 703–707

    Google Scholar 

  22. Fukusako, S.; Yamada, M.: Freezing characteristics of ethylene glycol solution, Wärme- Stoffübertrag 24, (1989) 303–309

    Google Scholar 

  23. Grange, B. W.; Viskanta, R.; Stevenson, W. H.: Interferometric Observation of thermohaline convection during freezing of saline solution. Letters in Heat and Mass Transfer 4 (1977) 85–92

    Google Scholar 

  24. Hayashi, Y.; Komori, T.: Investigation of freezing of salt solution in cells. ASME J. Heat Transfer, 101 (1979) 459–464

    Google Scholar 

  25. Chellaiah, S. and Viskanta, R.: Freezing of salt solutions on a vertical wall. Experimental Heat Transfer 1 (1987) 181–195

    Google Scholar 

  26. Braga, S. L.; Viskanta, R.: Solidification of a binary solution on a cold isothermal surface. Int. J. Heat and Mass Transfer 33 (1990) 745–754

    Google Scholar 

  27. M. W. Kellogg Company, Saline water conversion engineering data book, office of saline water report, U. S. Department of the Interior, Washington, D. C., 1972

    Google Scholar 

  28. Christenson, M. S. and Incropera, F. P.: Solidification of an aqueous ammonium chloride solution in a rectangular cavity -I: Experimental Study, Int. J. Heat and Mass Transfer 32 (1989) 47–68

    Google Scholar 

  29. Cole, G. S. and Winegard, W. C.: Thermal convection ahead of a solid-liquid interface. Canadian Metallurgical Quarterly 1 (1962) 29–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chellaiah, S., Waters, R.A. & Zampino, M.A. Solidification of an aqueous salt solution in the presence of thermosolutal convection. Warme - Und Stoffubertragung 28, 205–216 (1993). https://doi.org/10.1007/BF01541191

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01541191

Keywords

Navigation