Skip to main content
Log in

New concepts for controlled homoepitaxy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

On the basis of a kinetic growth model we discuss new methods to grow atomically flat homoepitaxial layers in a controlled way. The underlying principle of these methods is to change the growth parameters during growth of an atomic layer in such a way that nucleation on top of a growing layer is suppressed, and thus, layer-by-layer growth is achieved. Experimentally, this can be realized by changing the substrate temperature or deposition rate during monolayer growth in a well-defined way. The same can be achieved at constant temperature and deposition rate by simultaneous ion bombardment during the early stages of growth of a monolayer, or by adding suitable surfactants to the system. Model experiments on Ag(111) and on Cu(111) using thermal energy atom scattering and scanning tunneling microscopy demonstrate the success of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ehrlich, F.G. Hudda: J. Chem. Phys.44, 1039 (1966).

    Google Scholar 

  2. R. Kunkel, B. Poelsema, L.K. Verheij, G. Comsa: Phys. Rev. Lett.65, 733 (1990)

    Google Scholar 

  3. B. Poelsema, R. Kunkel, N. Nagel, A.F. Becker, G. Rosenfeld, L.K. Verheij, G. Comsa: Appl. Phys. A53, 369 (1991)

    Google Scholar 

  4. J. Tersoff, A.W. Denier van der Gon, R.M. Tromp: Phys. Rev. Lett.72, 266

  5. G. Rosenfeld, B. Poelsema, G. Comsa: Unpublished

  6. The best way of growing atomically smooth layers is, of course, to raise the substrate temperature to such a value that adatoms are fast enough to reach the pre-existing steps before they can accumulate and nucleate on the terraces in between the steps at all. This growth mode is called step flow and isnot limited by the step-edge barrier, because no step crossing is required: Step flow is obtained if all atoms landing on a terrace attach to theAscending steps bordering the terrace. We will not discuss this growth mode further in this paper because it is in many respects desirable to achieve smooth growth on substrates as ideal as possible (i.e., with very low step densities), for which step. flow would require high temperatures

  7. R.L. Schwoebel, E.J. Shipsey: J. Appl. Phys.37, 3682 (1966)

    Google Scholar 

  8. M. Bott, T. Michely, G. Comsa: Surf. Sci.272, 161 (1992)

    Google Scholar 

  9. M. Villarba, H. Jonsson: Phys. Rev. B49, 2208 (1994) M. Villarba, H. Jonsson. Surf. Sci.317, 15 (1994)

    Google Scholar 

  10. J. Jacobsen, K.W. Jacobsen, P. Stoltze, J.K. Nørskov: Phys. Rev. Lett.74, 2295 (1995)

    Google Scholar 

  11. S. Esch, M. Hohage, T. Michely, G. Comsa: Phys. Rev. Lett.72, 518 (1994).

    Google Scholar 

  12. G. Rosenfeld, B. Poelsema, G. Comsa: J. Cryst. Growth151, 230 (1995)

    Google Scholar 

  13. B. Poelsema, G. Comsa:Scattering of Thermal Energy Atoms, Springer Tracts Mod. Phys., Vol. 115 (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  14. K.H. Besocke: Surf. Sci.181, 145 (1987)

    Google Scholar 

  15. Y. Suzuki, H. Kikuchi, N. Koshizuka: Jpn. J. Appl. Phys.27, L1175 (1988)

    Google Scholar 

  16. K. Meinel, M. Klaua, H. Bethge: J. Cryst. Growth89, 477 (1988) K. Meinel, M. Klaua, H. Bethge: Phys. Stat. Sol.110, 189 (1988)

    Google Scholar 

  17. H.A. van der Vegt, H.M. van Pinxteren, M. Lohmeier, E. Vlieg, J.M.C. Thornton: Phys. Rev. Lett.68, 3335 (1992)

    Google Scholar 

  18. G. Rosenfeld: Manipulation von Wachstumsmodi in der Homoepitaxie am Beispiel einer Ag(111)-Fläche. Dissertation, Forschungszentraum Jülich (1994)

  19. G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema, G. Comsa: Phys. Rev. Lett.71, 895 (1993)

    Google Scholar 

  20. For a three-level system and an ideal instrument, the coverage of the first layer close to monolayer completion is:\(\theta _1 = {{(1 + 2\theta + \sqrt {{I \mathord{\left/ {\vphantom {I {I_0 }}} \right. \kern-\nulldelimiterspace} {I_0 }}} )} \mathord{\left/ {\vphantom {{(1 + 2\theta + \sqrt {{I \mathord{\left/ {\vphantom {I {I_0 }}} \right. \kern-\nulldelimiterspace} {I_0 }}} )} 4}} \right. \kern-\nulldelimiterspace} 4}\)

  21. Note that a similar direct evaluation of absolute intensities at ML coverage is not possible for the cases of no or little island density enhancement. First, there is no unique connection between the absolute anti-phase intensity and the layer distribution except for special cases like growth close to ideal 2D growth as manifested by the high quality oscillation of, e.g., Fig. 1d [18]. Second, the limited transfer width of the instrument affects the measured intensity for large structures, increasing the intensity above its ideal value. Its influence is therefore different for the different experiments of Fig. 1, being strongest for the conventional case which has the largest structures

  22. M. Henzler, T. Schmidt, E.Z. Luo: In:The Structure of Surfaces IV, ed. by X. D. Xie, S.Y. Tong, M.A. van Hove (World Scientific, Singapore 1994), p. 619

    Google Scholar 

  23. P.C. Dastoor, J. Ellis, A. Reichmuth, H. Bullman, B. Holst, W. Allison: Surf. Rev. Lett.1, 509 (1994)

    Google Scholar 

  24. W. Wulfhekel, N.N. Lipkin, J. Kliewer, G. Rosenfeld, L.C, Jorritsma, B. Poelsema, G. Comsa: Surf. Sci. (submitted)

  25. K. Morgenstern, G. Rosenfeld, B. Poelsema, G. Comsa: Phys. Rev. Lett.74, 2058 (1995)

    Google Scholar 

  26. B. Poelsema, A.F. Becker, G. Rosenfeld, R. Kunkel, N. Nagel, L.K. Verheij, G. Comsa: Surf. Sci.272, 269 (1992)

    Google Scholar 

  27. From Venables' theory,n ∞ Ri/(i+2), wherei is the size of the critical nucleus J.A. Venables, G.D.T. Spiller, M. Hanbücken: Rep. Prog. Phys.47, 399 (1984) ForT=100 K we assumei=1, forT=150, 200 and 260 K,i=2 (see Appendix)

    Google Scholar 

  28. From Tersoff's theory for a high barrier and compact islands,θ c ∞ (n 1/n 2)5/7 where we have assumed the critical cluster to be a dimer (see Appendix)

  29. V.A. Markov, O.P. Pchelgakov, L.V. Sokolov, S.I. Stenin, S. Stoyanov: Surf. Sci.250, 229 (1991)

    Google Scholar 

  30. A.K. Swan, J.F. Wendelken: Paper presented at the 41st Nat'l Symp. of the AVS, Denver (1994)

  31. J.J. de Miguel, A. Sanchez, A. Cebollada, J.M. Gallego, J. Feron, S. Ferrer: Surf. Sci.189/190, 1062 (1987)

    Google Scholar 

  32. H.J. Ernst, F. Fabre, J. Lapujoulade: Surf. Sci.275, L682 (1992)

    Google Scholar 

  33. T. Michely, G. Comsa: Phys. Rev. B44, 8411 (1991)

    Google Scholar 

  34. T. Michely, C. Teichert: Phys. Rev. B50, 11156 (1994)

    Google Scholar 

  35. S. Esch, T. Michely, G. Comsa: Verhandl. DPG (VI)30, O 37.37 (1995)

    Google Scholar 

  36. Landolt-Börnstein New Series III/25 (Springer, Berlin, Heidelberg 1991) pp. 203, 231

  37. S.E. Donelly: Vacuum28, 163 (1978)

    Google Scholar 

  38. P.A. Redhead, J.P. Hobson, E.V. Kornelsen:The Physical Basis of Ultrahigh Vacuum (Chapman & Hall, London 1968) p. 187

    Google Scholar 

  39. J.A. Meyer, R.J. Behm: Phys. Rev. Lett.73, 364 (1994)

    Google Scholar 

  40. G. Rosenfeld, B. Poelsema, G. Comsa: Phys. Rev. Lett.73, 365 (1994)

    Google Scholar 

  41. We note that the film morphology we observe here differs from the one shown by Vrijmoeth et al. under similar conditions [J. Vrijmoeth et al.: Phys. Rev. Lett.72, 3842 (1994)] If we correct for the different deposition rates the island density we measure is larger by a factor of 4–5 compared to the scan shown by Vrijmoeth et al. at a coverage of 0.6. Also the coverage at which nucleation on top of islands is observed is different: ≈ 0.4 ML in our case vs ≈ 0.55 ML as obtained by Vrijmoeth et al. The difference might be due to different evaporators used (in the evaporator used in our STM experiments, a small fraction of the Ag atoms is ionized), different crystal qualities (i.e., initial step separations: in our experiments greater than 10 000Å) or to different substrate temperatures (a higher temperature in the experiments by Vrijmoeth et al.). In any case, the island density we observe perfectly reproduces the island density in the earlier experiments by Meinel et al. Ref. [16].

    Google Scholar 

  42. K.L. Chopra:Thin Film Phenomena (McGraw-Hill, New York 1969) p. 230

    Google Scholar 

  43. E. Bauer, H. Poppa: Thin Solid Films12, 167 (1972)

    Google Scholar 

  44. R. Kern, G. LeLay, J.J. Metois: InCurrent Topics in Materials Science, Vol. 3, ed. by E. Kaldis (North-Holland, Amsterdam 1979) p. 382

    Google Scholar 

  45. Gaigher, N.G. van der Berg, J.B. Malherbe: Thin Solid Films12, 167

  46. W.F. Egelhoff, Jr., D.A. Steigerwald: J. Vac. Sci. Technol. A,7, 2167 (1989)

    Google Scholar 

  47. M. Copel, M.C. Reuter, E. Kaxiras, R.M. Tromp: Phys. Rev. Lett.63, 632

  48. K. Fujita, S. Fukatso, H. Yaguchi, Y. Shiraki, R. Ito: Jpn. J. Appl. Phys.29 L1981 (1990)

    Google Scholar 

  49. R.M. Tromp, M.C. Reuter: Phys. Rev. Lett.68, 984 (1992)

    Google Scholar 

  50. D.J. Eaglesham, F.C. Unterwald, D.C. Jacobson: Phys. Rev. Lett.70, 933 (1993)

    Google Scholar 

  51. M. Horn-von Hoegen: Appl. Phys. A59, 503 (1994)

    Google Scholar 

  52. B. Voigtländer, A. Zinner: Surf. Sci.292, L775 (1993)

    Google Scholar 

  53. S. Oppo, V. Fiorentini, M. Scheffler: Phys. Rev. Lett.71, 2437 (1993)

    Google Scholar 

  54. J. Vrijmoeth, H.A. van der Vegt, J.A. Meyer, E. Vlieg, R.J. Behm: Phys. Rev. Lett.72, 3842 (1994)

    Google Scholar 

  55. V. Fiorentini, S. Oppo, M. Scheffler: Appl. Phys. A60, 399 (1995)

    Google Scholar 

  56. A.F. Becker: Die ersten Stadien des Schichtwachstums von Pt auf Pt(111) sowie Ag auf Pt(111) untersucht mittels der Streuung thermischer Heliumatome. Dissertation, Forschungszentrum Jülich (1994)

  57. T. Michely, M. Hohage, S. Esch, G. Comsa: Phys. Rev. Lett (submitted)

  58. B. Poelsema, A.F. Becker, G. Rosenfeld, R. Kunkel, L.K. Verheij, G. Comsa: Unpublished

  59. M. Bott, M. Hohage, T. Micnely, G. Comsa: Phys. Rev. Lett.70, 1489 (1993)

    Google Scholar 

  60. J.E. Greene, S.A. Barnett, J.-E. Sundgren, A. Rockett: In:Ion Beam Assisted Film Growth, ed. by T. Itoh (Elsevier, Amsterdam 1989) p. 101

    Google Scholar 

  61. J.K. Hirvonen: Mater. Sci. Rep.6, 215 (1991)

    Google Scholar 

  62. D.B. Chrisey, G.K. Hubler (eds.).Pulsed Laser Deposion of Thin Films (Wiley, New York 1994)

    Google Scholar 

  63. J.A. Venables, G.D.T. Spiller, M. Hanbücken: Rep. Prog. Phys.47, 399 (1984)

    Google Scholar 

  64. E.Z. Luo, J. Wollschläger, F. Wegner, M. Henzler: Appl. Phys. A60, 19 (1995)

    Google Scholar 

  65. W.K. Rilling, C.M. Gilmore, T.D. Andreadis, J.A. Sprague: Cdn J. Phys.68, 1035 (1990)

    Google Scholar 

  66. C.L. Liu, J.M. Cohen, J.B. Adams, A.F. Voter: Surf. Sci.253, 334 (1991)

    Google Scholar 

  67. R.C. Nelson, T.L. Einstein, S.V. Khare, P.J. Rous: Surf. Sci.295, 462 (1993)

    Google Scholar 

  68. P. Stoltze: J. Phys. Condens. Matter6, 9495 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenfeld, G., Lipkin, N.N., Wulfhekel, W. et al. New concepts for controlled homoepitaxy. Appl. Phys. A 61, 455–466 (1995). https://doi.org/10.1007/BF01540247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01540247

PACS

Navigation