Advertisement

Wärme - und Stoffübertragung

, Volume 29, Issue 4, pp 271–276 | Cite as

Critical heat flux during natural convective boiling on uniformly heated inner tubes in vertical annular tubes submerged in saturated liquid

  • Masanori Monde
  • Yuichiro Mitutake
  • Shinji Kubo
Originalarbeiten

Abstract

An experimental study has been made of critical heat flux (CHF) of natural convective boiling on uniformly heated inner tubes in vertical annular tubes. The experiment was performed at a pressure ofP=0.1 to 3.1 MPa for the clearance of 0.4 to 4.0 mm, the heated tube diameter of 5 to 10.6 mm, the annular tube length ofL=58 to 840 mm and three kinds of liquids. The effects on the CHF are mainly discussed about the pressure in which the density ratio of the test fluidϱ v /ϱ l varies from 6.24 × 10−4 to 0.16 and of the ratio ofL/D he =2 to 500, where an equivalent heated length,D he , serves as a parameter connecting the clearance with the heated tube diameter. The experiment shows that the CHF obtained depends on the ratio ofL/D he and then a generalized correlation can be derived predicting the CHF data well.

Keywords

Experimental Study Heat Flux Apply Physic Natural Convective Density Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

Dhe

equivalent heated length = {(D o /D i )2 − 1} ·D i = 4s/D i · (1 +s/D i )

Di

outer diameter of a heated tube

Do

inner diameter of outertube

g

gravitational acceleration

Hfg

latent heat of evaporation

K

constant (=0.16)

L

length of the heated tube or surface in flow direction

P

system pressure

qco

critical heat flux for saturated boiling

s

clearance of annulus

Φ

Kutateladze number\( = \left( {q_{co} /\varrho _v H_{fg} } \right)/\sqrt[4]{{\sigma g\left( {\varrho _1 - \varrho _v } \right)/\varrho _v^2 }}\)

ϱl

density of saturated liquid

ϱv

density of saturated vapor

σ

surface tension

Kritische Wärmestromdichte beim Sieden unter natürlicher Konvektion an gleichförmig beheizten Innenrohren vertikaler Ringrohre

Zusammenfassung

Die kritische Wärmestromdichte (CHF) beim Sieden unter natürlicher Konvektion an gleichförmig beheizten Innenrohren senkrechter Ringrohre wurde experimentell untersucht, und zwar bei Drücken vonP=0,1 bis 3,1 MPa, Spaltweiten von 0,4 bis 4,0 mm, Durchmessern des beheizten Rohres von 5 bis 10,6 mm, Längen des Ringrohres vonL=58 bis 840 mm und mit drei Arten von Flüssigkeiten. Die Einflüsse auf die „CHF“ werden hauptsächlich in dem Druckbereich diskutiert, bei welchem das Dichteverhältnis der Testflüssigkeit, ϱ v l , zwischen 6,24 · 10−4 und 0,16 variiert und das VerhältnisL/D he von 2 bis 500 reicht. Die äquivalente beheizte LängeD he stellt dabei einen Parameter dar, welcher die Spaltweite mit dem Durchmesser des Heizrohres in Beziehung bringt. Die Experimente belegen, daß die erhaltenen CHF-Werte vom VerhältnisL/D he abhängen, woraus sich eine verallgemeinerte Beziehung herleiten läßt, welche die CHF-Daten gut vorauszuberechnen erlaubt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kutateladze, S. S.: Heat transfer in condensation and boiling. AEC-tr-3770 (1952)Google Scholar
  2. 2.
    Rohsenow, W. H.; Griffith, P.: Correlation of maximum heat transfer data for boiling of saturated liquids. Chem. Engng Prog. Symp., Ser. 52 (1956) 42–49Google Scholar
  3. 3.
    Zuber, N.: Hydrodynamic aspects of boiling heat transfer. USAEC Rept. AECU-4439 (1959)Google Scholar
  4. 4.
    Chang, Y. P.; Snyder, N. W.: Heat transfer in saturated boiling. Chem. Engng Prog. Symp., Ser. 56 (1960) 25–38Google Scholar
  5. 5.
    Zuber, N.; Tribus, M.; Westwater, J. W.: The hydrodynamic crisis in pool boiling of saturated and subcooling liquids. International Developments in Heat Transfer, ASME, New York (1961) 230Google Scholar
  6. 6.
    Lienhard, J. P.; Dhir, V. K.: Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes. NASA, CR-2270, July (1973)Google Scholar
  7. 7.
    Lienhard, J. P.; Dhir, V. K.: Hydrodynamic prediction of peak pool-boiling heat fluxes from finite bodies. ASME Journal of Heat Transfer 95 (1973) 152–158Google Scholar
  8. 8.
    Katto, Y.: Generalized correlation for critical heat flux of natural convection boiling in confined channels. Transactions of JSME (in Japanese) 44 (1978) 3908–3911Google Scholar
  9. 9.
    Katto, Y.; Kawamura, S.: Critical heat flux of natural convection boiling in vertical uniformly heated tubes. Transactions of JSME (in Japanese) 47 (1981) 3908–3911Google Scholar
  10. 10.
    Lehongre, S.; Boissin, J. C.; Johannes, C.; Harpe, A. D. L.: Critical nucleate boiling of liquid helium in narrow tubes and annuli. Prog. 2nd International Cryogenic Engineering Conf. (1968) 274–275Google Scholar
  11. 11.
    Monde, M.; Yamaji, K.: Critical heat flux during natural convective boiling in a vertical uniformly heated tubes submerged in saturated liquid. Heat Transfer 1990, 2 (1990) 111–116Google Scholar
  12. 12.
    Sydoriak, S. G.; Roberts, T. R.: Study of boiling in short narrow channels and its application to design of magnets cooled by liquid H2 and N2. Journal of Applied Physics 28 (1957) 143–148Google Scholar
  13. 13.
    Vishnev, I. P.; Vinokur, Y. A.; Shaposhnikov, V. A.; Gorokhov, V. V.: Nucleate boiling in crisis of helium in vertical channels with natural convection. Heat Transfer-Soviet Research 6 (1974) 170–176Google Scholar
  14. 14.
    Ogata, H.; Kenmochi, M.; Sato, S.; Kimura, H.: Boiling heat transfer of liquid helium in long narrow channels. Cryogenic Engineering (in Japanese) (1969) 219–225Google Scholar
  15. 15.
    Bailey, R. L.: Heat transfer to liquid helium design data for both cooled superconducting magnets. Prog. 5th International Conference on Magnet Technology (1975) 582–589Google Scholar
  16. 16.
    Jahannes, C.; Mollard, J.: Nucleate boiling of helium I in channels simulating the cooled channels of large superconducting magnets. Advances in Cryogenic Eng. (1972) 332–341Google Scholar
  17. 17.
    Bogaardt, M.; Spigt, C. L.; Dijkman, F. J. M., Verheugen, A. N. J.: On the heat transfer and fluid flow characteristics in a boiling channel under conditions of natural convection. Proc. Instn Mech. Engrs Vol. 180 Pt 3 C (1965) 77–87Google Scholar
  18. 18.
    Monde, M.; Kusuda, H.; Uehara, H.: Critical heat flux during natural convective boiling in vertical rectangular channels submerged in saturated liquid. ASME Journal of heat transfer 104 (1982) 300–303Google Scholar
  19. 19.
    Wallis, G. B.: One dimensional two-phase flow. McGraw-Hill, New York (1967)Google Scholar
  20. 20.
    Tien, C. L.: A simple analytical model for counter-current flow limiting phenomena with vapor condensation. Lett. Heat Mass Transfer 4 (1977) 231–237Google Scholar
  21. 21.
    Tien, C. L.; Chung, K. S.: Entrainment limits in heat pipes. AIAA J. 17 (1979) 643–646Google Scholar
  22. 22.
    Imura, H.; Sasaguchi, K.; Kozai, H.; Numata, S.: Critical heat flux in a closed two-phase thermosyphon. Int. J. Heat Mass Transfer 26 (1983) 1181–1188Google Scholar
  23. 23.
    Smirnov, Ye. L.: Critical heat flux in flooding in vertical channels. Heat Transfer-Sov. Research 16–3 (1984) 19–23Google Scholar
  24. 24.
    Dobran, F.: Steady-state characteristics and stability thresholds of a closed two-phase thermosyphon. Int. J. Heat Mass Transfer 28 (1985) 949–957Google Scholar
  25. 25.
    Reed, J. C.; Tien, C. L.: Modeling of a two-phase closed thermosyphon. Trans. ASME, J. Heat Transfer 109 (1987) 722–730Google Scholar
  26. 26.
    Casarosa, C.; Dobran, F.: Experimental investigation and analytical modeling of a closed the-phase thermosyphon with imposed convection boundary conditions. Int. J. Heat Mass Transfer 31 (1988) 1815–1833Google Scholar
  27. 27.
    Katto, Y.; Watanabe, K.: An analytical study on the critical heat flux of countercurrent boiling in a vertical tube with a closed bottom. Int. J. Heat Mass Transfer 35 (1992) 3021–3028Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Masanori Monde
    • 1
  • Yuichiro Mitutake
    • 1
  • Shinji Kubo
    • 1
  1. 1.Department of Mechanical EngineeringSaga UniversitySagaJapan

Personalised recommendations