Skip to main content
Log in

Collinearity between the Shapley value and the egalitarian division rules for cooperative games

  • Theoretical Papers
  • Published:
Operations-Research-Spektrum Aims and scope Submit manuscript

Abstract

For each cooperativen-person gamev and eachh∈{1, 2, ⋯,n}, letv h be the average worth of coalitions of sizeh andv i h the average worth of coalitions of sizeh which do not contain playeri∈N. The paper introduces the notion of a proportional average worth game (or PAW-game), i.e., the zero-normalized gamev for which there exist numbersc h ∈ℝ such thatv h v i h =c h (v n−1v −1/i n ) for allh∈{2, 3, ⋯,n−1}, andi∈N. The notion of average worth is used to prove a formula for the Shapley value of a PAW-game. It is shown that the Shapley value, the value representing the center of the imputation set, the egalitarian non-separable contribution value and the egalitarian non-average contribution value of a PAW-game are collinear. The class of PAW-games contains strictly the class ofk-coalitional games possessing the collinearity property discussed by Driessen and Funaki (1991). Finally, it is illustrated that the unanimity games and the landlord games are PAW-games.

Zusammenfassung

Seiv ein kooperativesn-Personenspiel und seih∈{1, 2, ⋯,n}. Mitv h bezeichnen wir die mittlere Auszahlung aller Koalitionen der Größeh und mitv i h die mittlere Auszahlung aller Koalitionen der Größeh, die den Spieleri∈N nicht enthalten. In dieser Arbeit, führen wir den Begriff des Spieles mit proportionaler mittlerer Auszahlung (oder PMA-Spiel) ein. Diese sind null-reduzierte Spielev, für die Zahlenc h ∈ℝ existieren, sodaß die Beziehungv h v i h =c h (v n−1v −1/i n ) für jedesh∈{2, 3, ⋯,n−1 undi∈N gilt. Der Begriff der mittleren Auszahlung wird dann benutzt, um eine Formel für den Shapley-Wert der PMA-Spiele abzuleiten. Wir zeigen, daß der Shapley-Wert, und die durch das Zentrum der Imputationsmenge, die gleichmäßigen nicht-separablen Beiträge, bzw. gleichmäßigen nicht-gemittelten Beiträge definierten Werte der PMA-Spiele kollinear sind. Die Klasse aller PMA-Spiele enthält im strengen Sinne die Klasse allerk-Koalitionsspiele, die die Kollinearitätseigenschaft haben (Driessen und Funaki, 1991). Schließlich zeigen wir, daß die Einstimmigkeitsspiele und die Grundbesitzerspiele auch PMA-Spiele sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dragan I (1992) An average per capita formula for the Shapley value. Libertas Math 12:139–146

    Google Scholar 

  2. Driessen TSH (1985) Properties of 1-convexn-person games. OR Spektrum 7:19–26

    Google Scholar 

  3. Driessen TSH (1988) Cooperative Games, Solutions, and Applications. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  4. Driessen TSH, Funaki Y (1991) Coincidence of and collinearity between game theoretic solutions. OR Spektrum 13:15–30

    Google Scholar 

  5. Driessen TSH, Funaki Y (1993a) The egalitarian non-average contribution method for cooperative games. Memorandum No. 1135, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands

    Google Scholar 

  6. Driessen TSH, Funaki Y (1993b) Reduced game properties of egalitarian division rules for cooperative games. Memorandum No. 1136, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands

    Google Scholar 

  7. Funaki Y (1986) Upper and lower bounds of the kernel and nucleolus. Int J Game Theory 15:121–129

    Google Scholar 

  8. Gambarelli G, Zambruno G (1979) Analytical reformulation of the Shapley value of a game. In: Giappicheli G (ed) Atti del Primo Convegno, A.M.A.S.E.S., Torino, pp 197–211

    Google Scholar 

  9. Legros P (1986) Allocating joint costs by means of the nucleolus. Int J Game Theory 15:109–119

    Google Scholar 

  10. Maschler M (1982) The worth of a cooperative enterprise to each member. In: Games, Economics and Time Series Analysis. Physica, Wien, pp 67–73

    Google Scholar 

  11. Moulin H (1985) The separability axiom and equal-sharing methods. J Econ Theory 36:120–148

    Google Scholar 

  12. Peleg B (1992) Voting by count and account. In: Selten R (ed) Rational Interaction. Essays in honor of John C. Harsanyi. Springer, Berlin Heidelberg, pp 45–51

    Google Scholar 

  13. Shapley LS (1953) A value forn-person games. In: Kuhn H, Tucker AW (eds) Contributions to the Theory of Games II. Ann. Math. Studies Vol 28, Princeton University Press, Princeton, New Jersey, pp 307–317

    Google Scholar 

  14. Young HP, Okada N, Hashimoto T (1982) Cost allocation in water resources development. Water Resourc Res 18:463–475

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragan, I., Driessen, T. & Funaki, Y. Collinearity between the Shapley value and the egalitarian division rules for cooperative games. OR Spektrum 18, 97–105 (1996). https://doi.org/10.1007/BF01539733

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539733

Key words

Schlüsselwörter

Navigation