Skip to main content
Log in

Two-dimensional performance of convecting-radiating fins of different profile shapes

Das zweidimensionale Verhalten von Rippen unterschiedlicher Profil-form bezüglich Wärmeabfuhr durch Konvektion und Strahlung

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

A finite element approach is used to investigate the two-dimensional performance of convecting-radiating fins of rectangular, trapezoidal, triangular, and concave parabolic shapes. The heat transfer rate depends on fin size parameter α, Biot numberBi, radiation-conduction parameterN r , and environment temperatures θ and θ r . Numerical results for the heat transfer rate and the error due to one-dimensional assumption are presented and discussed for each geometry. The highest heat dissipation is achieved with the concave parabolic shape and the lowest with the rectangular shape with the trapezoidal and triangular shapes falling in between. The maximum error of +144 percent is noted for a short and thick rectangular fin (α=1) and −47 percent for a long thin triangular fin (α=20).

Zusammenfassung

Mit Hilfe der Methode der Finiten Elemente wird das zweidimensionale Übertragungsverhalten bezüglich Konvektion und Strahlung von Rippen mit rechteckigem, trapezförmigem, dreieckförmigem und konkav-parabolischem Querschnitt untersucht. Der übertragbare Wärmestrom hängt von dem Rippenparameter 2L/W, der BiotzahlBi, dem StrahlungskonvektionsparameterN r und von den Umgebungstemperaturen θ W und θ r ab. Für jede Geometrieform werden der übertragene Wärmestrom und der bei eindimensionaler Behandlung auftretende Fehler angegeben und diskutiert. Der höchste Wärmeübergang wird mit dem Parabelprofil, der niedrigste mit dem Rechteckprofil erzielt. Trapez- und Dreiecksform liegen dazwischen. Für eine kurze und dicke Rechtecksrippe (2L/W=1) erhält man einen Maximalfehler von +144% und für eine lange dünne Dreiecksrippe (2L/W=20) von −47%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bi :

=h w/2k, Biot number

F :

load vector

h :

convective heat transfer coefficient

J :

Jacobian

k :

thermal conductivity of fin

L :

fin length

m :

iteration number

N :

set of basis functions

N r :

=ε σ w T 3 b /2k, radiation-conduction parameter

q :

heat transfer rate per unit fin depth

Q :

=q/k T b , dimensionless heat transfer rate

T :

temperature

w :

fin base thickness

x :

axial coordinate

X :

=α x/L

y :

transverse coordinate

Y :

=y/(w/2)

α :

=L/(w/2)

ε :

emissivity of fin surface

θ :

=T/T b , dimensionless temperature

σ :

Stefan-Boltzmann constant

Ω :

domain of fin

Γ :

perimeter of fin

1:

one-dimensional conduction

2:

two-dimensional conduction

∞:

convective environment

b :

fin base

r :

radiative environment

References

  1. Kraus, A. D.: Sixty-five years of extended surface technology. Appl. Mech. Rev. 41 (1988) 321–364

    Google Scholar 

  2. Irey, R. K.: Errors in the one-dimensional fin solution. Trans. ASME J. Heat Transfer 90 (1968) 175–176

    Google Scholar 

  3. Levitsky, M. J.: The criterion for validity of the fin approximation. Int. J. Heat Mass Transfer 15 (1972) 1960–1963

    Google Scholar 

  4. Lau, W.; Tan, C. W.: Errors in one-dimensional heat transfer analysis in straight and annular fins. Trans. ASME J. Heat Transfer 95 (1973) 549–551

    Google Scholar 

  5. Sfeir, A. A.: The heat balance integral in steady-state conduction. Trans. ASME J. Heat Transfer 98 (1976) 466–470

    Google Scholar 

  6. Suryanarayana, N. V.: Two-dimensional effects on heat transfer rates from an array of straight fins. Trans. ASME J. Heat Transfer 99 (1977) 129–132

    Google Scholar 

  7. Burmeister, L. C.: Triangular fin performance by the heat balance integral method. Trans. ASME J. Heat Transfer 101 (1979) 562–564

    Google Scholar 

  8. Heggs, P. J.; Stone, P. R.: The effects of dimensions on the heat flowrate through extended surfaces. Trans. ASME J. Heat Transfer 102 (1980) 180–182

    Google Scholar 

  9. Look, D. C., Jr.: Two-dimensional fin with non-constant root temperature. Int. J. Heat Mass Transfer 32 (1989) 977–980

    Google Scholar 

  10. Aparecido, J. B.; Cotta, R. M.: Improved one-dimensional fin solutions. Heat Transfer Engineering 11 (1990) 49–59

    Google Scholar 

  11. Aziz, A.; Nguyen, H.: Two-dimensional effects in a triangular convecting fin. J. thermophysics and heat transfer 6, No. 1 (1992) pp. 165–167

    Google Scholar 

  12. Manzoor, M.; Ingham, D. B.; Heggs, P. J.: Improved formulations for the analysis of convecting and radiating finned surfaces. AIAA J. 21 (1983) 120–126

    Google Scholar 

  13. Nguyen, H.; Aziz, A.: Heat transfer from convecting-radiating fins of different profile shapes. Wärme-Stoffübertrag. 27, No. 1 (1992) 67–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aziz, A., Nguyen, H. Two-dimensional performance of convecting-radiating fins of different profile shapes. Wärme - und Stoffübertragung 28, 481–487 (1993). https://doi.org/10.1007/BF01539679

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539679

Keywords

Navigation