Skip to main content
Log in

A comparison of elastic and plastic contact models for the prediction of thermal contact conductance

Ein Vergleich von elastischen und plastischen Kontaktmodellen zur Voraussage von thermischen Kontaktwiderständen

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Experimentally determined thermal contact resistance (conductance) data are compared with predictions based on two different theories. One of the theories assumes elastic contact, while the other theory is based on the assumption of plastic contact. Even though the high plastic index calculated for the contacting surface suggested that contacting asperities would deform plastically, the experimental data generally agree better with the predictions obtained using the elastic contact model than with the predictions obtained using the plastic contact model.

Zusammenfassung

Gemessene Werte von thermischen Kontaktwiderständen wurden mit Werten verglichen, die mit Hilfe zweier verschiedener Modellvorstellungen erhalten wurden. Eine dieser Modellvorstellungen beruht auf der Annahme von elastischem Kontakt, während das zweite Modell plastischen Kontakt annimmt. Obwohl der hohe Wert eines Plastizitätsindexes auf eine plastische Verformung der Rauhigkeiten der sich berührenden Oberflächen hinweist, stimmen die gemessenen Kontaktwiderstände besser mit den Widerständen überein, die mit Hilfe des elastischen Kontaktmodells berechnet wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

contact radius

A a :

actual area of contact

A n :

nominal contact area

b :

flux tube radius

c :

constriction ratio

C c :

normalized contact conductance

d :

separation of summit mean planes

D sum :

density of summits

E*:

equivalent elastic modulus

g(c):

constriction alleviation factor

h c :

contact conductance

H b :

bulk hardness

H :

Vickers micro-hardness

k :

thermal conductivity

m i :

moments of profile power spectral density

N :

number of contacts

P :

contact pressure

Q :

heat flow

R :

mean peak radius

R s :

mean summit radius

R c :

thermal contact resistance

ΔT :

temperature difference across interface

α :

bandwidth parameter

Ψ :

plasticity index

ν :

Poisson ratio

σ :

standard deviation of profile height distribution

σ s :

standard deviation of summit height distribution

References

  1. O'Callaghan, P. W.; Probert, S. D.: Prediction and measurement of true areas of contact between solids. Wear 120 (1987) 29–49

    Google Scholar 

  2. Hisakado, T.: On the mechanism of contact between solid surfaces, 4th Rep. — Surface Roughness Effects on Friction, Bull. JSME 13 (1970) 55

    Google Scholar 

  3. Fletcher, L. S.: Recent developments in contact conductance heat transfer. J. Heat Transfer 110 (4-B) (1988) 1059–1070

    Google Scholar 

  4. Yovanovich, M. M.: Thermal contact correlations, Paper 81–1164 presented at AIAA 16th Thermophysics Conference, Palo Alto, Calif., June 23–25, 1981

  5. Yovanovich, M. M.; Hegazy, A.: Experimental verification of contact conductance models based upon distributed surface miocro-hardness, Paper A 83–0532 presented at AIAA 21st Aerospace Sciences Meeting, Reno, Nevada, January 10–13, 1983

  6. Greenwood, J. A.; Williamson, J. B. P.: Contact of nominally flat surface. Proc. Roy. Soc. London A 295 (1966) 300–319

    Google Scholar 

  7. Roess, L. C.: Theory of spreading resistance, in: Report of Beacon Laboratory of Texas Inc., Beacon, New York, 1949, Appendix A, unpublished

    Google Scholar 

  8. Mikic, B. B.; Rohsenow, W. M.: Thermal contact resistance. MIT Rep. No. 4542-41, Massachusetts Institute of Technology, MA, USA 1966

    Google Scholar 

  9. Cooper, M. G.; Mikic, B. B.; Yovanovich, M. M.: Thermal contact conductance. Int. J. Heat and Mass Transfer 12 (1969) 279–300

    Google Scholar 

  10. McCool, J. I.: Comparison of models for the contact of rough surfaces. Wear 107 (1986) 37–60

    Google Scholar 

  11. Longuet-Higgins, M. S.: Statistical properties of an isotropic random surface. Phil. Trans. Roy. Soc. A 250 (1957) 157–174

    Google Scholar 

  12. Longuet-Higgins, M. S.: The statistical analysis of a random, moving surface. Phil. Trans. Roy. Soc. A 249 (1957) 321–387

    Google Scholar 

  13. Longuet-Higgins, M. S.: The statistical geometry of random surfaces. Proc. 13th Symp. on Applied Math., American mathematics Society, Boston, MA (1962) 105–143

    Google Scholar 

  14. Nayak, P. R.: Random process model of rough surfaces. Trans. ASME, J. Lubric. Technol. 93 (3) (1971) 398–407

    Google Scholar 

  15. Nayak, P. R.: Some aspects of surface roughness measurement. Wear 26 (1973) 165–174

    Google Scholar 

  16. Nayak, P. R.: Random process model of rough surfaces in plastic contact. Wear 26 (1973) 305–333

    Google Scholar 

  17. McWaid, T. H.; Marschall, E.: Application of the modified Greenwood and Williamson contact model for the prediction of thermal contact resistance. Wear 152 (1992) 263–277

    Google Scholar 

  18. Greenwood, J. A.; Tripp, J. H.: The contact of two nominally flat rough surfaces. Proc. Inst. Mech. Engrs. 185 (1970–1971) 625–633

    Google Scholar 

  19. McWaid, T. H.; Marschall, E.: Thermal contact resistance across pressed metal contacts in a vacuum environmental. Accepted for publication in: Int. Heat Mass Transfer, 1992

  20. McWaid, T. H.: Thermal contact resistance across pressed metal contacts in a vacuum environmental. Ph.D. Thesis, University of Califormia at Santa Barbara, CA, USA, 1990

    Google Scholar 

  21. Materials Selector 1989, Materials Engineering, Penton Publishing, Inc., Dec. 1988

  22. Snaith, B.; Probert, S. D.; O'Callaghan, P. W.: Thermal resistance of pressed contacts. Applied Energy 22 (1986) 31–84

    Google Scholar 

  23. Madhusudana, C. V.; Fletcher, L. S.: Contact heat transfer. — The last decade. AIAA Journal 24(3) (1985) 510–523

    Google Scholar 

  24. Mikic, B. B.: Thermal contact conductance; theoretical considerations. Int. J. Heat Mass Transfer 17 (1974) 205–214

    Google Scholar 

  25. Bhushan, B.: Analysis of the real aera of contact between a polymeric magnetic medium and a rigid surface. Trans. ASME, J. Tribology 106 (1984) 26–34

    Google Scholar 

  26. Lysaght, V. E.; DeBellis, A.: Hardness Testing Handbook. American Chain and Cable Company, USA 1969

    Google Scholar 

  27. Bhushan, B.: Tribology and Mechanics of Magnetic Storage Devices. Springer-Verlang, New York 1990

    Google Scholar 

  28. Pullen, J.; Williamson, J. B. P.: The contact of nominally flat surfaces. Proc. Roy. Soc. London, Ser. A, 327 (1972) 159–173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McWaid, T.H., Marschall, E. A comparison of elastic and plastic contact models for the prediction of thermal contact conductance. Wärme - und Stoffübertragung 28, 441–448 (1993). https://doi.org/10.1007/BF01539674

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539674

Keywords

Navigation