Skip to main content
Log in

Karmarkar's projective algorithm: A null space variant for multi-commodity generalized networks

  • Published:
Acta Mathematicae Applicatae Sinica Aims and scope Submit manuscript

Abstract

This paper discusses some computational problems of the projective algorithm of Karmarkar. A new special method of implementing this null-space algorithm for large scale generalized multicommodity networks is herein developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ben-Israel and A. Charnes, Contributions to the Theory of Generalized Inverses,J. SIAM,11: 3 (1963), 667–699.

    Google Scholar 

  2. A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, John Wiley & Sons, Inc., New York, 1974.

    Google Scholar 

  3. A. Bjorck and I. S. Duff, A Direct Method for the Solution of Sparse Linear Least Squares Problems,Linear Algebra and Its Application,34 (1980), 43–67.

    Google Scholar 

  4. A. Charnes and W. W. Cooper, Management Models and Industrial Applications of Linear Programming, Vols. I and II, John Wiley and Sons, Inc., New York, 1961.

    Google Scholar 

  5. A. Charnes, W. W. Cooper, S. Duffuaa and M. Kress, Complexity and Computability of Solutions to Linear Programming Systems,International J. of Computer and Information Sciences,9: 6 (1980), 483–506.

    Google Scholar 

  6. A. R. Charles, Generalized Inverses of Partitioned Matrices,J. SIAM,13: 4 (1965), 1033–1035.

    Google Scholar 

  7. D. Dantzig, Linear Programming and Extensions, Princeton University Press, Priceton, New Jersey, 1963.

    Google Scholar 

  8. I. S. Duff, A Survey of Sparse Matrix Research, Proc. IEEE 65, 1977, 500–535.

    Google Scholar 

  9. A. George and M. T. Health, Solution of Sparse Linear Least Squares Problems Using Givens Rotations,Linear Algebra Appl.,34 (1980), 69–83.

    Google Scholar 

  10. A. George, M. T. Heath and R. J. Plemmons, Solution of Larges Scale Sparse Least Squares Problems Using Auxiliary Storage,SIAM J. Sci. Stat. Comput.,2: 4 (1981), 416–429.

    Google Scholar 

  11. A. George, M. T. Heath and E. Ng, A Comparison of Some Methods for Solving Linear Least-Squares Problems,SIAM J. Sci. Stat. Comput.,4: 2 (1983), 177–187.

    Google Scholar 

  12. A. George and J. W.-H. Liu, Compute Solution of Large Sparse Positive Definite Systems, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

    Google Scholar 

  13. F. Glover and D. Klingman, On the Equivalence of Some Generalized Network Problems to Pure Network Problems,Math. Programming. 4: 3 (1973), 351–361.

    Google Scholar 

  14. F. Glover and D. Klingman, The Simlex SON Alogorithm for LP/Embedded Network Problems, Center for Cybernetic Studies Report, CCS 317, The University of Texas at Austin, Austin, Texas, Jan., 1977.

    Google Scholar 

  15. G. H. Golub and C. Reinsch, Singular Value Decomposition and Least Squares Solutions,Numer. Math.,14 (1970), 403–420.

    Google Scholar 

  16. M. T. Heath, Some Extensions of an Algorithm for Sparse Linear Least Squares Problems,SIAM J. Sci. Stat. Comput.,3: 2 (1982), 223–237.

    Google Scholar 

  17. Y. Ijiri, On the Generalized Inverse of an Incidence Matrix,J. SIAM,13 (1965), 827–836.

    Google Scholar 

  18. N. Karmarkar, A New Polynomial Time Algorithm for Linear Programming, AT&T Bell Labs, Murray Hill, N. J.,ACM, (1984), 302–311.

    Google Scholar 

  19. N. Karmarkar, Seminar Presentations at ORSA/TIMS, Dallas, Tx, 1984.

  20. C. L. Lawson, and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974.

    Google Scholar 

  21. G. Peters and J. H. Wilkinson, The Least Squares Problem and Pseudo-Inverses,The Computer Journal,13: 3 (1970), 309–316.

    Google Scholar 

  22. F. J. Peters, Sparse matrices and Substructures, Mathematical Center Tracts 119, Amsterdam, 1980.

  23. G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York, N. Y., 1973.

    Google Scholar 

  24. G. Strang, Linear Algebra and Its Applications, Academic Press, New York, N. Y., 1976.

    Google Scholar 

  25. E. C. Randall, Representations for the Generalized Inverse,J. SIAM,12: 3 (1964), 588–599.

    Google Scholar 

  26. R. E. Tarjan, Graph Theory and Gaussian Elemination in Sparse Matrix Computations, New York, Academic Press, 1976.

    Google Scholar 

  27. G. L. Thompson, Current Status and Future Possibilities of Large Scale Systems Research, Management Sciences Research Report No. 513, Carnegie-Mellon University, Pittsburgh, Pa.

  28. J. A. Tomlin, An Experimental Approach to Karmarkar's Projective Method for Linear Programming, Ketron, Inc., Mountain View, CA, Jan. 1985.

    Google Scholar 

  29. J. Verdina, Projective Geometry and Point Transformations, Allyn and Bacon, Inc., Boston, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Institute of Applied Mathematics, Academia Sinica

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, I., Charnes, A. & Tiantai, S. Karmarkar's projective algorithm: A null space variant for multi-commodity generalized networks. Acta Mathematicae Applicatae Sinica 2, 168–190 (1985). https://doi.org/10.1007/BF01539488

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539488

Keywords

Navigation