Skip to main content
Log in

Pluripotency of somatic cell hybrids between nullipotent and pluripotent embryonal carcinoma cells

  • Published:
Somatic Cell Genetics

Abstract

Embryonal carcinoma (EC) cells are stem cells of teratocarcinomas. Many lines of EC cells can differentiate into a wide spectrum of cell types and are termed pluripotent. Some EC cell lines, however, cannot differentiate and are termed nullipotent. Nullipotent and pluripotent cells are both developmentally uncommitted but differ in their potential for differentiation. As a first step in analyzing this difference we asked whether pluripotent × nullipotent somatic cell hybrids could differentiate. The pluripotent EC cell line PSA-1 was fused with a ouabainresistant, hypoxanthine phosphoribosyltransferase-deficient subclone of the nullipotent embryonal carcinoma cell line F9. The developmental potential of nine independent hybrid clones was assayed in vivo. The tumors derived from these hybrid cell lines contained the same spectrum of differentiated tissue types found in tumors produced by the pluripotent parent. Control nullipotent × nullipotent somatic cell hybrids produced tumors containing only embryonal carcinoma tissue. The pluripotent phenotype therefore behaves in a dominant fashion in these somatic cell hybrids. One explanation for these results is that nullipotent F9 cells lack a critical function required for differentiation in vivo, and this function is supplied to the hybrids by the pluripotent parent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Graham, C.F. (1977). InConcepts in Mammalian Embryogenesis, (ed.) Sherman, M. (MIT Press, Cambridge, Massachusetts), pp. 315–394.

    Google Scholar 

  2. Hogan, B.L.M. (1977).Intr. Rev. Biochem. 15:333–376.

    Google Scholar 

  3. Martin, G.R. (1975).Cell 5:229–243.

    PubMed  Google Scholar 

  4. Solter, D., and Damjanov, I. (1979). InMethods in Cancer Research, Vol. XVIII, (eds.) Fishman, W.H., and Busch, H. (Academic Press, New York), pp. 277–332.

    Google Scholar 

  5. Stevens, L.C. (1967).Adv. Morphol. 6:1–81.

    Google Scholar 

  6. Jakob, H., Boon, T., Gaillaird, J. Nicolas, J.F., and Jacob, F. (1973).Ann. Microbiol. (Inst. Pasteur 124B:269–282.

    Google Scholar 

  7. Martin, G.R., and Evans, M.J. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1441–1445.

    PubMed  Google Scholar 

  8. McBurney, M.W. (1976).J. Cell. Physiol. 89:441–456.

    PubMed  Google Scholar 

  9. Finch, B.W., and Ephrussi, B. (1967).Proc. Natl. Acad. Sci. U.S.A. 57:615–621.

    Google Scholar 

  10. Jami, J., Failly, C., and Ritz, E. (1973).Exp. Cell Res. 76:191–199.

    PubMed  Google Scholar 

  11. Illmensee, K., Hoppe, P.C., and Croce, C.M. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:1914–1918.

    PubMed  Google Scholar 

  12. Litwack, G., and Croce, C.M. (1979).J. Cell. Physiol. 101:1–8.

    PubMed  Google Scholar 

  13. McBurney, M.W. (1977).Cell 12:653–662.

    PubMed  Google Scholar 

  14. Miller, R.A., and Ruddle, F.H. (1976).Cell 9:45–55.

    PubMed  Google Scholar 

  15. Miller, R.A., and Ruddle, F.H. (1977).Dev. Biol. 56:157–173.

    PubMed  Google Scholar 

  16. Bernstine, E.G., Hooper, M.L., Grandchamp, S., Ephrussi, B. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:3899–3903.

    PubMed  Google Scholar 

  17. Martin, G.R., and Evans, M.J. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1441–1445.

    PubMed  Google Scholar 

  18. Sherman, M.I., and Miller, R.A. (1978).Dev. Biol. 63:27–34.

    PubMed  Google Scholar 

  19. Mahdavi, V., and Strickland, S. (1978).Cell 15:393–403.

    PubMed  Google Scholar 

  20. Rosenstraus, M.J., and Levine, A.J. (1979).Cell 17:337–346.

    PubMed  Google Scholar 

  21. Chen, T.R. (1977).Exp. Cell Res. 104:255–262.

    PubMed  Google Scholar 

  22. Chasin, L.A. (1973).J. Cell. Physiol. 82:299–308.

    PubMed  Google Scholar 

  23. Hooper, M.A., and Slack, C. (1977).Dev. Biol. 55:271–283.

    PubMed  Google Scholar 

  24. Chasin, L.A., and Urlaub, G. (1976).Somat. Cell Genet. 2:453–467.

    PubMed  Google Scholar 

  25. Davidson, R.L., and Gerald, P.S. (1975).Somat. Cell Genet. 2:165–176.

    Google Scholar 

  26. Pontecorvo, G. (1975).Somat. Cell Genet. 1:397–400.

    PubMed  Google Scholar 

  27. Harris, H. (1979).Somat. Cell Genet. 5:923–930.

    PubMed  Google Scholar 

  28. Dewey, M.J., Martin, D.W., Jr., Martin, G.R., and Mintz, B. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:5564–5568.

    PubMed  Google Scholar 

  29. Baker, R., Brunette, D., Markowitz, R., Thompson, L., Whitmore, G., Siminovitch, L., and Till, J. (1974).Cell 1:9–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenstraus, M.J., Balint, R.F. & Levine, A.J. Pluripotency of somatic cell hybrids between nullipotent and pluripotent embryonal carcinoma cells. Somat Cell Mol Genet 6, 555–565 (1980). https://doi.org/10.1007/BF01539156

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539156

Keywords

Navigation