Skip to main content
Log in

Expression of differentiated functions in hepatoma cell hybrids: Selection in glucose-free media of segregated hybrid cells which reexpress gluconeogenic enzymes

  • Published:
Somatic Cell Genetics

Abstract

Selective glucose-free media have been used to study the reexpression of liver-specific gluconeogenic enzymes in rat hepatoma × mouse lymphoblastoma somatic hybrids. The utilization for gluconeogenesis of dihydroxyacetone or oxaloacetate requires two enzymes: fructose diphosphatase as well as either triokinase for the former or phosphoenolpyruvate carboxykinase for the latter. By sequential selection with these substrates, the reexpression of the three gluconeogenic enzymes has been dissociated. The reexpression of these enzymes is correlated with the loss of mouse chromosomes. In addition, the characterization of the parental forms of aldolase B, another liver-specific enzyme, shows that reexpression corresponds to the simultaneous production of the rat and mouse enzymes. These results demonstrate the chromosomal origin of extinction and suggest that activation of mouse silent genes which accompanies reexpression can occur without loss of the parental determinations. The hypothesis that determination involves regulatory rather than structural genes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Ephrussi, B. (1972).Hybridization of Somatic Cells (Princeton University Press, Princeton, New Jersey).

    Google Scholar 

  2. Davidson, R. L., Ephrussi, B., and Yamamoto, K. (1966).Proc. Natl. Acad. Sci. U.S.A. 56:1437–1440.

    PubMed  Google Scholar 

  3. Davidson, R. L. (1974).Annu. Rev. Genet. 8:195–218.

    PubMed  Google Scholar 

  4. Bernhard, H. P. (1976).Int. Rev. Cytol. 47:289–325.

    PubMed  Google Scholar 

  5. Buckingham, M. E., Cohen, A., Gros, F., Luzzati, D., Charmot, D., and Drugeon, G. (1974).Biochimie 56:1571–1573.

    PubMed  Google Scholar 

  6. Orkin, S. H., Harosi, F. I., and Leder, P. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:98–102.

    PubMed  Google Scholar 

  7. Deisseroth, A., Burk, R., Picciano, D., Minna, J., Anderson, W. F., and Nienhuis, A. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1102–1106.

    PubMed  Google Scholar 

  8. Klebe, R. J., Chen, T. R., and Ruddle, F. H. (1970).Proc. Natl. Acad. Sci. U.S.A. 66:1220–1227.

    PubMed  Google Scholar 

  9. Weiss, M. C., and Chaplain, M. (1971).Proc. Natl. Acad. Sci. U.S.A. 68:3026–3030.

    PubMed  Google Scholar 

  10. Bertolotti, R., and Weiss, M. C. (1972).Biochimie 54:195–201.

    PubMed  Google Scholar 

  11. Bertolotti, R., and Weiss, M. C. (1974).Differentiation 2:5–17.

    Google Scholar 

  12. Croce, C. M., Litwack, G., and Koprowski, H. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:1268–1272.

    PubMed  Google Scholar 

  13. Weiss, M. C., Sparkes, R. S., and Bertolotti, R. (1975).Somat. Cell Genet. 1:27–40.

    PubMed  Google Scholar 

  14. Bertolotti, R. (1977).Somat. Cell Genet. 3:365–380.

    PubMed  Google Scholar 

  15. Malawista, S. E., and Weiss, M. C. (1974).Proc. Natl. Acad. Sci. U.S.A. 71:927–931.

    PubMed  Google Scholar 

  16. Brown, J. E., and Weiss, M. C. (1975).Cell 6:481–494.

    Google Scholar 

  17. Deschatrette, J., and Weiss, M. C. (1974).Biochimie 56:1603–1611.

    PubMed  Google Scholar 

  18. Pitot, J. C., Peraino, C., Morse, P. A., and Potter, V. R. (1964).Natl. Cancer Inst. Monogr. 13:229–242.

    PubMed  Google Scholar 

  19. Reuber, M. D. (1961).J. Natl. Cancer Inst. 26:891–900.

    PubMed  Google Scholar 

  20. Fischer, G. A. (1958).Ann. N.Y. Acad. Sci. 76:673–680.

    PubMed  Google Scholar 

  21. Schneider, J. A., and Weiss, M. C. (1971).Proc. Natl. Acad. Sci. U.S.A. 68:127–131.

    PubMed  Google Scholar 

  22. Coon, H. G., and Weiss, M. C. (1969).Proc. Natl. Acad. Sci. U.S.A. 62:852–859.

    PubMed  Google Scholar 

  23. Ham, R. G. (1965).Proc. Natl. Acad. Sci. U.S.A. 53:288–293.

    PubMed  Google Scholar 

  24. Schneider, E. L., Stanbridge, E. J., and Epstein, C. J. (1974).Exp. Cell Res. 84:311–318.

    PubMed  Google Scholar 

  25. Fogh, J., and Fogh, H. (1964).Proc. Soc. Exp. Biol. Med. 117:899–901.

    PubMed  Google Scholar 

  26. Ballard, B. J., and Hanson, R. W. (1967).Biochem. J. 104:866–871.

    PubMed  Google Scholar 

  27. Barnett, C. A., and Wicks, W. D. (1971).J. Biol. Chem. 246:7201–7206.

    PubMed  Google Scholar 

  28. Traniello, S., Melloni, E., Pontremoli, S., Sia, C. L., and Horecker, B. L. (1972).Arch. Biochem. Biophys. 149:222–231.

    PubMed  Google Scholar 

  29. Veneziale, C. M. (1972).Eur. J. Biochem. 31:59–62.

    PubMed  Google Scholar 

  30. Bublitz, C., and Wieland, O. (1962). InMethods in Enzymology, Vol. V, (eds.) Colowick, S. P., and Kaplan, N. O. (Academic Press New York) pp. 354–361.

    Google Scholar 

  31. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  32. Bertolotti, R., and Weiss, M. C. (1972).J. Cell. Physiol. 79:211–224.

    PubMed  Google Scholar 

  33. Claisse, M. L., Pere-Aubert, G., Clavillier, L. P., and Slonimski, P. P. (1970).Eur. J. Biochem. 16:430–438.

    PubMed  Google Scholar 

  34. Rothfels, K. H., and Siminovitch, L. (1958).Stain Technol. 33:73–77.

    PubMed  Google Scholar 

  35. Dev, V. G., Miller, D. A., and Miller, O. J. (1973).Genetics 75:663–670.

    PubMed  Google Scholar 

  36. Gresser, I., Brouty-Boyé, D., Thomas, M. T. and Macieira-Cohelho, A. (1970).J. Natl. Cancer Inst. 45:1145–1153.

    PubMed  Google Scholar 

  37. Horecker, B. L., Melloni, E., and Pontremoli, S. (1975).Adv. Enzymol. 42:193–226.

    PubMed  Google Scholar 

  38. Hers, H. G. (1962). InMethods in Enzymology, Vol. V, (eds.) Colowick, S. P., and Kaplan, N. O. (Academic Press New York) pp. 362–364.

    Google Scholar 

  39. Penhoet, E. E., Kochman, M., and Rutter, W. J. (1969).Biochemistry 8:4396–4402.

    PubMed  Google Scholar 

  40. Szpirer, C., and Szpirer, J. (1975).Differentiation 4:85–91.

    PubMed  Google Scholar 

  41. Littlefield, J. W. (1964).Science 145:709–710.

    PubMed  Google Scholar 

  42. Croce, C. M., Bakay, B., Nyhan, W. L., and Koprowski, H. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:2590–2594.

    PubMed  Google Scholar 

  43. Ruddle, F. H., and Creagan, R. (1975).Annu. Rev. Genet. 9:407–486.

    PubMed  Google Scholar 

  44. Ditta, G., Soderberg, K., Landy, F., and Scheffler, I. E. (1976).Somat. Cell Genet. 2:331–344.

    PubMed  Google Scholar 

  45. Fougere, C., Ruiz, F., and Ephrussi, B. (1972).Proc. Natl. Acad. Sci. U.S.A. 69:330–334.

    PubMed  Google Scholar 

  46. Davidson, R. L. (1972).Proc. Natl. Acad. Sci. U.S.A. 69:951–955.

    PubMed  Google Scholar 

  47. Britten, R. J., and Davidson, E. H. (1969).Science 165:349–357.

    PubMed  Google Scholar 

  48. Davis, F. M., and Adelberg, E. A. (1973).Bacteriol. Rev. 37:197–214.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolotti, R. Expression of differentiated functions in hepatoma cell hybrids: Selection in glucose-free media of segregated hybrid cells which reexpress gluconeogenic enzymes. Somat Cell Mol Genet 3, 579–602 (1977). https://doi.org/10.1007/BF01539067

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539067

Keywords

Navigation