Skip to main content
Log in

Evidence for a multistep mechanism for cell-cell fusion by herpes simplex virus with mutations in the syn 3 locus using heparin derivatives during fusion from within

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

Addition of heparin-Na+ as well as related substances of high and intermediate MW (Arteparon and polyanion SP54) 3 h after infection inhibit fusion from within (FFWI) induced by HSV strains with mutations in the syn 3 locus only. The concentration of heparin-Na+ required to inhibit FFWI is 10-fold higher (1 mg/ml) than that needed to inhibit adsorption. Instead of fusion, cell rounding is observed. The effect is readily reversible. A low MW heparin disaccharide is ineffective. Neomycin, at a concentration of 8 mM, inhibits FFWI induced by all HSV-1 but not HSV-2 strains, whereas adsorption is inhibited at 3 mM. We conclude from our observations that cell-cell fusion (FFWI) induced by syn 3 locus mutants of HSV-1 depends on a multistep mechanism. One may be constituted by pre-existing cell-cell connections or microfusions leading to cell rounding, whereas another may be active using newly appearing cell bridges during FFWI; also the three-dimensional structure of the cell membrane may be of importance. Moreover, the molecular mechanisms of FFWI induced by mutations in the syn 3 locus compared to the other 5 syn loci should be different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Baghian A, Kousoulas KG (1993) Role of the Na+, K+ pump in Herpes simplex type 1-induced cell fusion: Mellitin causes specific reversion of syncytial mutants with the syn 1 mutation to syn + (wild-type) phenotype. Virology 196: 548–556

    PubMed  Google Scholar 

  2. Bzik DJ, Fox BA, DeLuca NA, Person S (1984) Nucleotide sequence specifying the glycoprotein gene, gB, of herpes simlex virus type 1. Virology 133: 301–314

    PubMed  Google Scholar 

  3. Bzik DJ, Fox BA, DeLuca NA, Person S (1984) Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: Mutations affecting rate of virus entry and cell fusion. Virology 137: 185–190

    PubMed  Google Scholar 

  4. Dundaroff S, Falke D (1972) Thymidine-, uridine- and choline-kinase in rabbit kidney cells infected with Herpes virus hominis type 1 and 2. Arch Virol 38: 56–66

    Google Scholar 

  5. Falke D, Knoblich A, Müller S (1985) Fusion from without induced by Herpes simplex virus type 1. Intervirology 24: 211–219

    PubMed  Google Scholar 

  6. Falke D, Richter IE (1961). Mikrokinematographische Studien über die Entstehung von Riesenzellen durch Herpes-B-Virus in Zellkulturen. I. Vorgänge an den Zellgrenzen und Granulabewegungen. Arch Ges Virusforsch 11: 73–85

    PubMed  Google Scholar 

  7. Falke D, Richter IE (1961) Mikrokinematographische Studien über die Entstehung von Riesenzellen durch Herpes-B-Virus in Zellkulturen II. Morphologisches Verhalten und Bewegungen der Kerne. Arch Ges Virusforsch 11: 86–93

    PubMed  Google Scholar 

  8. Fuller AO, Lee W-C (1992) Herpes simplex virus type 1 entry through a cascade of virus-cell interactions requires different roles of gD and gH in penetration. J Virol 66: 5002–5012

    PubMed  Google Scholar 

  9. Holland TC, Sandri-Goldin RM, Holland LE, Martin SD, Levine M, Glorioso, JC (1983) Physical mapping of the mutation in an antigenic variant of herpes simplex virus type 1 by use of an immunoreactive plaque assay. J Virol 46: 3

    Google Scholar 

  10. Langeland N, Holmsen H, Lillehaug JR, Haar L (1987) Evidence that neomycin inhibits binding of herpes simplex virus type 1 to the cellular receptor. J Virol 61: 3388–3393

    PubMed  Google Scholar 

  11. Lee WC, Fuller AO (1993) Herpes simplex virus type 1 and pseudorabies virus bind to a common saturable receptor on Vero cells that is not heparinsulfate. J Virol 67: 5088–5097

    PubMed  Google Scholar 

  12. Lycke E, Johansson M, Svennerholm B, Lindahl U (1991) Binding of herpes simplex virus to cellular heparan sulfate, an initial step in the adsorption process. J Gen Virol 91: 1131–1137

    Google Scholar 

  13. Matis J, Krivjanská M, Rajcáni J (1992) Herpes simplex virus type 1 (HSV-1) HSZP interferes also after antibody neutralization with early shutoff of host protein synthesis induced by HSV-1 KOS. Arch Virol 123: 209–214

    PubMed  Google Scholar 

  14. Oyan AM, Dolter KE, Langeland N, Goins WF, Glorioso JC, Haar L, Crumpacker JC (1993) Resistance of herpes simplex virus type 2 to neomycin maps to the N-terminal portion of glycoprotein C. J Virol 67: 2434–2441

    PubMed  Google Scholar 

  15. Romanelli MG, Cattozzo EM, Faggioli L, Tognon M (1991) Fine mapping and characterization of the syn 6 locus in the herpes simplex virus type 1 genome. J Gen Virol 72: 1991–1995

    PubMed  Google Scholar 

  16. Rösen A, Ernst F, Koch H-G, Gelderblom H, Hadar J, Tabor E, Ben-Hur T, Becker Y (1986) Replacement of the deletion in the genome (0.762–0.789 mn) of avirulent HSV-1 HFEM using cloned MluI DNA-fragment (0.7615–0.796 mn) of virulent HSV-1 F leads to generation of virulent intratypic recombinant. Virus Res 5: 157–175

    PubMed  Google Scholar 

  17. Ruyechan WT, Morse LS, Knipe DM, Roizman B (1979) Molecular genetics of herpes simplex virus II. Mapping of the major virus glycoproteins and of the genetic loci specifying the social behavior of infected cells. J Virol 29: 677–697

    PubMed  Google Scholar 

  18. Spear PG (1993) Membrane fusion induced by herpes simplex viruses In: Bentz J (ed) Viral fusion mechanisms. CRC Press, Boca Raton, pp 201–232

    Google Scholar 

  19. Subak-Sharpe J, Broom SM, Ritchie DA, Timbury MC, Macnab JCM, Marsden HS, Hay J (1974) Genetic and biochemical studies with herpesvirus. Cold Spring Harbor Symp Quant Biol 39: 717–730

    Google Scholar 

  20. Walev I, Lingen M, Lazzaro M, Weise K, Falke D (1994) Cyclosporin A resistance of herpes simplex virus-induced “Fusion from within” as a phenotypical marker of mutations in the syn 3 locus of glycoprotein B gene. Virus Genes 8: 83–86

    PubMed  Google Scholar 

  21. Walev I, Weise K, Falke D (1991) Differentiation of herpes simplex virus-induced fusion from without and fusion from within by cyclosporin A and compound 48/80. J Gen Virol 72: 1377–1382

    PubMed  Google Scholar 

  22. Walev I, Wollert KC, Weise K, Falke D (1991) Characterization of fusion from without induced by herpes simplex virus. Arch Virol 117: 29–44

    PubMed  Google Scholar 

  23. Weise K, Kaerner HC, Glorioso J, Schroeder HC (1987) Replacement of glycoprotein B gene sequences in Herpes simplex virus type 1 strain ANG by corresponding sequences of the strain KOS causes changes of plaque morphology and neuropathogenicity. J Gen Virol 68: 1909–1919

    PubMed  Google Scholar 

  24. Wolf A (1992) Der Einfluß einer Infektion mit Herpes simplex Virus mit unterschiedlicher zytopathogener Wirkung auf Zellskelett und Zellkontakte. Inaugural Dissertation Johannes Gutenberg-Universität, Mainz.

    Google Scholar 

  25. WuDunn D, Spear PG (1989) Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol 63: 52–58

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seck, T., Lingen, M., Weise, K. et al. Evidence for a multistep mechanism for cell-cell fusion by herpes simplex virus with mutations in the syn 3 locus using heparin derivatives during fusion from within. Archives of Virology 136, 173–181 (1994). https://doi.org/10.1007/BF01538826

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538826

Keywords

Navigation