Skip to main content
Log in

High-resolution electron energy-loss spectroscopy at epitaxially grown GaAs(100)

A comparison between theory and experiment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High-Resolution Electron Energy-Loss Spectroscopy (HREELS) is shown to be a very sensitive tool to investigate the space-charge regime of n-respectively p-type semiconductors. The most simple model we applied to fit experimental spectra is based on a step-like distribution of free carriers with the Drude dielectric response function. In this case, the dispersion of surface plasmon excitations is neglected, but it is considered in the Thomas-Fermi and the Debye-Hückel models. We use these models to fit HREELS-spectra, obtained from heavily Si-doped GaAs(100), which was grown by Molecular Beam Epitaxy (MBE). A comparison shown that the Drude model overestimates both the free-carrier concentration and the plasmon damping factor. The use of a more realistic smooth free-carrier profile, obtained by the self-consistent solution of the Schrödinger and Poisson equations, leads to plasmon excitations with lower frequencies. Besides Ohmic damping, the calculations show that Landau damping should be incorporated in order to obtain a better fit, particularly at intermediate frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Rhoderick, R.H. Williams:Metal-Semiconductor Contacts (Clarendon, Oxford 1988)

    Google Scholar 

  2. H. Lüth:Surfaces and Interfaces of Solids (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  3. W. Mönch:Semiconductor surfaces and Interfaces 2nd edn. Springer Ser. Surf. Sci., Vol. 26 (Springer, Berlin, Heidelberg 1995).

    Google Scholar 

  4. H. Lüth:Adv. Solid State Phys., Vol. 21 (Vieweg, Braunschweig 1981)

    Google Scholar 

  5. H. Lüth: Vacuum38, 223 (1988)

    Google Scholar 

  6. H. Ibach, D.L. Mills,Electron Energy Loss Spectroscopy and Surface Vibrations (Academic, New York 1982)

    Google Scholar 

  7. D.H. Ehlers, D.L. Mills: Phys. Rev.B 34, 3939 (1986)

    Google Scholar 

  8. S.R. Streight, D.L. Mills: Phys. Rev.B 37, 965 (1988)

    Google Scholar 

  9. Ph. Lambin, J.P. Vigneron, A.A. Lucas: Phys. Rev.B 32, 8203 (1985)

    Google Scholar 

  10. Ph. Lambin, J.P. Vigneron, A.A. Lucas: Comput. Phys. Commun.60, 351 (1990)

    Google Scholar 

  11. B. Rösen, H. Ch. Schäfer, Ch. Dieker, A. Rizzi, D. Gerthsen: J. Vac. Sci. Technol.B 11, 1407 (1993)

    Google Scholar 

  12. D.G. Kilday, G. Margaritondo, G.J. Lapeyre: J. Vac. Sci. Technol.A 8, 2755 (1990)

    Google Scholar 

  13. Y. Chen, S. Nannarone, J.A. Schaefer, J.C. Hermanson, G.J. Lapeyre: Phys. Rev.B 29, 7653 (1989)

    Google Scholar 

  14. Y. Chen, J.C. Hermanson, G.J. Lapeyre: Phys. Rev.B 39, 12682 (1989)

    Google Scholar 

  15. S.M. Sze:Physics of Semiconductor Devices (Wiley, New York 1981)

    Google Scholar 

  16. J. Lindhard: Kgl. Danske Vidensbab. Sekskab. Mat.-Fys. Medd8, 28 (1954)

    Google Scholar 

  17. W.L. Schaich: Surf. Sci.122, 175 (1982)

    Google Scholar 

  18. Z. Penzar, M. Sunjic: Phys. Sci.30, 631 (1984)

    Google Scholar 

  19. A. Raymond, J.L. Robert, C. Bernard: J. Phys.C 12, 2289 (1979)

    Google Scholar 

  20. A. Ritz, H. Lüth: Phys. Rev. Lett.52, 1242 (1984)

    Google Scholar 

  21. A. Many, Y. Goldstein, N.B. Grover:Semiconductor Surfaces (North-Holland, Amsterdam 1965)

    Google Scholar 

  22. C. Carbel, M. Stucky, P. Hantojarvi, K. Saarinen, P. Mozer: Phys. Rev.B 38, 8192 (1988)

    Google Scholar 

  23. B. Pajot, R.C. Newman, R. Murray, A. Jalil, J. Chevallier, R. Azoulay: Phys. Rev.B 37, 4188 (1988)

    Google Scholar 

  24. L. Pavesi, P. Giannozzi, F.K. Reinhart: Phys. Rev.B 42, 1864 (1990)

    Google Scholar 

  25. L. Pavesi, P. Giannozzi: Phys. Rev.B 43, 2446 (1991)

    Google Scholar 

  26. P.R. Bridden, R. Jones: Phys. Rev. Lett.64, 2535 (1990)

    Google Scholar 

  27. Z.J. Gray-Crychowski, R.A. Stradling, R.G. Egdell, P.J. Dobson, B.A. Joyce, K. Woodbridge: Solid State Commun.59, 703 (1986)

    Google Scholar 

  28. Z.J. Gray-Crychowski, R.G. Egdell, B.A. Joyce, R.A. Stradling, K. Woodbridge: Surf. Sci.186 482 (1987)

    Google Scholar 

  29. R. Biagi, C. Mariani, U. del Pennino: Phys. Rev.B 46, 2467 (1992)

    Google Scholar 

  30. U. del Penino, R. Biagi, C. Mariani: Appl. Surf. Sci.56–58, 44 (1992)

    Google Scholar 

  31. C. Lohe, A. Leuther, A. Förster, H. Lüth: Phys. Rev.B 47, 3819 (1993)

    Google Scholar 

  32. S.J. Pearton, J.W. Corbett, M. Stavola (eds.):Hydrogen in Crystalline Semiconductors, Springer Ser. Mater. Sci., Vol. 16 (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyakov, V., Elbe, A. & Schäfer, J.A. High-resolution electron energy-loss spectroscopy at epitaxially grown GaAs(100). Appl. Phys. A 60, 567–572 (1995). https://doi.org/10.1007/BF01538530

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538530

PACS

Navigation