Skip to main content
Log in

Towards an understanding of surfactant action in the epitaxial growth of metals: The case of Sb on Ag (111)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We address the role of “surfactant” adsorbates in determining changes in the homoepitaxial growth mode of metals, discussing the case of Sb on Ag (111). From ab initio calculations, we extract evidence that the mechanism operative in this system is that Sb induces an irregular shape and an increase in density of the growing Ag islands, and an ensuing increase of the number of attempts for an adatom to descend to a lower terrace. This results from a combination of peculiar properties of this system: Sb is adsorbed insubstitutional surface sites, leading to the formation of a Sb−Ag surface alloy; deposited Ag has reduced mobility on Sb-covered Ag (111), from which follows a higher nucleation probability. The island shape is irregular since the surface alloy is disordered. Surface seggregation of Sb once the growing layer is completed furthers the phenomenon for many deposited Ag layers. Our explanation of the surfactant action of Sb on Ag (111) does not require a reduction of the downstep diffusion barrier, which may, however, be a concurrent factor helpful to interlayer mass transport and layerby-layer growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kunkel, B. Poelsema, L.K. Verheij, G. Comsa: Phys. Rev. Lett.65, 733 (1990) M. Bott, T. Michely, G. Comsa: Surf. Sci.272, 161 (1992)

    Google Scholar 

  2. H. A. van der Vegt, H.M. van Pinxteren, M. Lohmeier, E. Vlieg, J.M.C. Thornton: Phys. Rev. Lett.68, 3335 (1992)

    Google Scholar 

  3. G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema, G. Comsa: Phys. Rev. Lett.71, 895 (1993)

    Google Scholar 

  4. S. Esch, M. Hohage, T. Michely, G. Comsa: Phys. Rev. Lett.72, 518 (1994)

    Google Scholar 

  5. S. Oppo, V. fiorentini, M. Scheffler, Phys. Rev. Lett.71, 2437 (1993)

    Google Scholar 

  6. S. Oppo, V. Fiorentini, M. Scheffler: MRS Proc.317 (1994) (in press)

  7. J. Tersoff, A.W. Denier van der Gon, R. Tromp: Phys. Rev. Lett.72, 266 (1994)

    Google Scholar 

  8. M. Scheffler, V. Fiorentini, S. Oppo: InSurface Science II, ed. by R. MacDonald, E. Taglauer, K. Wandelt, Springer Proc. Phys. (Springer, Berlin, Heidelberg 1994) (in press)

    Google Scholar 

  9. Z. Zhang, M. Lagally: Phys. Rev. Lett.72, 693 (1994) We note that the description of surfactant action given in that paper does not apply to the present case. Such description of surfactant action is based on the inequalityV A-A>V A-SV s-s connecting the adatom-adatom, adatom-surfactant, and surfactant-surfactant bond strengths (A=Ag, S=Sb). Surface-substitutional Sb repels Ag adatoms, which contradicts the assumptions of ZL. As a consequence of its surface-substitutional geometry, the surfactant will diffuse on the surface at a very much slower rate than the deposited Ag adatoms, which is reverse to the ZL suggestion. Thus, due to the substitutional adsorption of Sb, the general mechanism envisaged by ZL seems of limited relevance for this system

    Google Scholar 

  10. J. Vrijmoeth, H.A. van der Vegt, J.A. Meyer, E. Vlieg, R.J. Behm: Phys. Rev. Lett.72, 3842 (1994)

    Google Scholar 

  11. K. Meinel, M. Klaua, H. Bethge: Phys. Stat. Sol.110, 189 (1988)

    Google Scholar 

  12. H. Bethge: InKinetics of Ordering and Growth at Surfaces, ed. by M.G. Lagally (Plenum, New York 1990) p. 125

    Google Scholar 

  13. Oxford Dictionary of Physics (Oxford Univ. Press, Oxford 1988)

  14. D.J. Eaglesham, F.C. Unterwald, D.C. Jacobson: Phys. Rev. Lett.70, 966 (1993)

    Google Scholar 

  15. G. Ehrlich, F.G. Hudda: J. Chem. Phys.44, 1039 (1966)

    Google Scholar 

  16. R.L. Schwöbel: J. Appl. Phys.40, 614 (1969)

    Google Scholar 

  17. R. Stumpf, M. Scheffler: Phys. Rev. Lett.72, 254 (1994)

    Google Scholar 

  18. R.Q. Hwang, J. Schröder, R. Günther, R.J. Behm: Phys. Rev. Lett.67, 3279 (1991)

    Google Scholar 

  19. R. Dreizler, E. Gross:Density Functional Theory, (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  20. Exchange-correlation energy by D.M. Ceperley, B.J. Alder: Phys. Rev. Lett.45, 566 (1980)

    Google Scholar 

  21. Parametrized by S. Wosko, L. Wilk, M. Nusair: J. Phys.58, 1200 (1980)

    Google Scholar 

  22. M. Methfessel: Phys. Rev. B38, 1537 (1988)

    Google Scholar 

  23. M. Methfessel, C. O. Rodriguez, O.K. Andersen: Phys. Rev. B40, 2009 (1989)

    Google Scholar 

  24. For surface studies see M. Methfessel, D. Hennig, M. Scheffler: Phys. Rev. B46, 4816 (1992)

    Google Scholar 

  25. V. Fiorentini, M. Methfessel, M. Scheffler: Phys. Rev. Lett.71, 1051 (1993)

    Google Scholar 

  26. J. Neugebauer, M. Scheffler: Phys. Rev.46, 16067 (1992)

    Google Scholar 

  27. Sb gains only about 0.2 eV by being lifted to the upper layer by exchange with asingle Ag from the upper layer. One thus expects that to create on-surface Sb at an appreciable rate from substitutional Sb, more upper-layer Ag neighbors are needed to provide sufficient coordination to the Sb atom being lifted

  28. Indeed, recent STM results indicate the presence of Sb not only on the substrate, but also on the growing islands ([10], and private communication by J. Meyer)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiorentini, V., Oppo, S. & Scheffler, M. Towards an understanding of surfactant action in the epitaxial growth of metals: The case of Sb on Ag (111). Appl. Phys. A 60, 399–402 (1995). https://doi.org/10.1007/BF01538341

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538341

PACS

Navigation