Skip to main content
Log in

Energy deposition, reflection and sputtering in hyperthermal rare-gas→Cu bombardment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using molecular-dynamics simulation, we study the scattering and penetration of normally incident hyperthermal (5–400 eV) Ne, Ar, and Xe atoms off a Cu crystal. We find that between 80% and 98% of the incident energy is deposited in the solid; the fraction depends primarily on the projectile mass, and — for not too low energies — only slightly on the bombarding energy. At low energy, the major part of the non-deposited energy is carried away by the reflected projectile. At energies above the sputter threshold, an increasingly important contribution of between 2% and 6% of the incident energy is carried away by sputtered particles. These results compare well with experiment. Electronic inelastic losses show only little influence on this behaviour. We demonstrate that the inclusion of a realistic attractive interaction between the projectile and the target atoms influences the energy deposition considerably at energies below around 100 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Coufal, H.F. Winters, H.L. Bay, W. Eckstein: Phys. Rev. B44, 4747 (1991)

    Google Scholar 

  2. H.L. Bay, H.F. Winters, H.J. Coufal, W. Eckstein: Appl. Phys. A55, 274 (1992)

    Google Scholar 

  3. V. Chirita, B.A. Pailthorpe, R.E. Collins: J. Phys. D26, 133 (1993)

    Google Scholar 

  4. E.S. Mashkova, V.A. Molchanov:Medium-Energy Ion Reflection from Solids (North-Holland, Amsterdam 1985)

    Google Scholar 

  5. W. Eckstein:Computer Simulation of Ion-Solid Interactions, Springer Ser. Mater. Sci., Vol. 10 (Springer, Berlin, Heidelbern: 1991)

    Google Scholar 

  6. B.H. Cooper, C.A. DiRubio, G.A. Kimmel, R.L. McEachern: Nucl. Instrum. Methods B64, 49 (1992)

    Google Scholar 

  7. R.J.W.E. Lahaye, S. Stolte, A.W. Kleyn, R.J. Smith, S. Holloway: Surf. Sci.307–309, 187 (1994)

    Google Scholar 

  8. F. Karetta, H.M. Urbassek: J. Appl. Phys.71, 5410 (1992)

    Google Scholar 

  9. J.F. Ziegler, J.P. Biersack, U. Littmark: InStopping Powers and Ranges of Ions in Matter, ed. by J.F. Ziegler, Vol. 1 (Pergamon, New York 1985)

    Google Scholar 

  10. H. Gades, H.M. Urbassek: Nucl. Instrum. Methods B69, 232 (1992)

    Google Scholar 

  11. J. Lindhard, V.Nielsen, M. Scharff, P.V. Thomsen: Mat. Fys. Medd. Dan. Vid. Selsk.33, No. 10 (1963)

  12. J. Lindhard, M. Scharff: Phys. Rev.124, 128 (1961)

    Google Scholar 

  13. H.H. Andersen, H.L. Bay: InSputtering by Particle Bombardment I, ed. by R. Behrisch, Topics Appl. Phys., Vol. 47 (Springer, Berlin, Heidelberg 1981) p 145

    Google Scholar 

  14. P. Sigmund: InSputtering by Particle Bombardment I, ed. by R. Behrisch, Topics Appl. Phys., Vol. 47 (Springer, Berlin, Heidelberg 1981) p. 9

    Google Scholar 

  15. R.M. Logan, R.E. Stickney: J. Chem. Phys.44, 195 (1966)

    Google Scholar 

  16. R.M. Logan, J.C. Keck: J. Chem. Phys.49, 860 (1968)

    Google Scholar 

  17. C.T. Rettner, M.N.R. Ashfold (eds.).Dynamics of Gas-Surface Interactions, Adv. Gas-Phase Photochem. Kin. (The Royal Society of Chemistry, Cambridge, UK 1990)

    Google Scholar 

  18. P. Sigmund: Cdn. J. Phys.46, 731 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gades, H., Urbassek, H.M. Energy deposition, reflection and sputtering in hyperthermal rare-gas→Cu bombardment. Appl. Phys. A 61, 39–43 (1995). https://doi.org/10.1007/BF01538208

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538208

PACS

Navigation