Applied Physics A

, Volume 61, Issue 3, pp 321–324 | Cite as

Investigations of positron lifetimes in InP with a pulsed positron beam

  • P. Willutzki
  • J. Störmer
  • D. T. Britton
  • W. Triftshäuser
Regular Papers


Indium Phosphide layers grown by gas source Molecular Beam Epitaxy, (MBE) have been studied by positron lifetime spectroscopy using the recently modified pulsed positron beam in Munich. The as-grown samples are known to be phosphorous rich and contain a high concentration of vacancy-type defects. On annealing, phosphorous precipitates are formed and the concentration of free volume defects increases. Positron lifetime spectroscopy has identified the grown in defects to be indium vacancies at a concentration around 1018cm−3. The dominant defects after annealing exhibit a positron lifetime characteristic of divacancies and are present at concentrations in excess of 5×1019cm−3.


78.70 68.55 61.70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. W. Liang, P. Z. Lee, D. W. Shih, C. W. Tu: Appl. Phys. Lett.60, 2104 (1992)Google Scholar
  2. 2.
    T. Uchida, N. Yokouchi, T. Miyamoto, F. Koyama, K. Iga: J. Cryst. Growth129, 275 (1993)Google Scholar
  3. 3.
    P. Dreszer, W. M. Chen, K. Seendripu, J. A. Wolk, W. Walukiewicz, B. W. Liang, C. W. Tu, E. R. Weber: Phys. Rev. B47, 4111 (1993)Google Scholar
  4. 4.
    A. P. Seitsonen, R. Virkkunen, M. J. Puska, R. M. Nieminen: Phys. Rev. B49, 5253 (1994)Google Scholar
  5. 5.
    P. Hautojärvi, J. Mäkinen, S. Palko, K. Saarinen, C. Corbel, L. Liszkay: Mater. Sci. Eng. B22, 16 (1993)Google Scholar
  6. 6.
    A. Claverie, J. Crestou, J. C. Garcia: Appl. Phys. Lett.62, 1638 (1993)Google Scholar
  7. 7.
    P. J. Schultz, K. G. Lynn: Rev. Mod. Phys.60, 701 (1988)Google Scholar
  8. 8.
    P. J. Simpson, U. G. Akano, P. J. Schultz, I. V. Mitchell: Mater. Sci. Forum105–110, 1435 (1992)Google Scholar
  9. 9.
    L. Wei, S. Tanigawa, A. Uedono, K. Wada, H. Nakanishi: Jpn. J. Appl. Phys.33, 33 (1994)Google Scholar
  10. 10.a
    P. Willutzki, J. Störmer, G. Kögel, P. Sperr, D. T. Britton, R. Steindl, W. Triftshäuser: Meas. Sci. Technol.5, 548 (1994)Google Scholar
  11. 10b.
    P. Willutzki, J. Störmer, G. Kögel, P. Sperr, D. T. Britton, R. Steindl, W. Triftshäuser: Proc. ICPA-10, ed. by Y. J. He, B. S. Cao, Mater. Sci. Forum175–178, 237 (1995)Google Scholar
  12. 11.
    G. Dlubek, O. Brümmer, F. Plazaola, P. Hautojärvi, K. Naukarinen: Appl. Phys. Lett.46, 1136 (1985)Google Scholar
  13. 12.
    Y. Horii, A. Kawasuso, M. Hasegawa, M. Suezawa, S. Yamaguchi, K. Sumino: Mater. Sci. Forum.105–110, 1061 (1992)Google Scholar
  14. 13.
    T. Bretagnon, S. Dannefaer, D. Kerr: J. Appl. Phys.73, 4697 (1993)Google Scholar
  15. 14.
    M. J. Puska, S. Mäkinen, M. Manninen, R. M. Nieminen: Phys. Rev. B39, 7666 (1989)Google Scholar
  16. 15.
    J. Strömer, P. Willutzki, D. T. Britton, G. Kögel, W. Triftshäuser, W. Kiunke, F. Wittman, I. Eisele: Appl. Phys. A61, 71 (1995)Google Scholar
  17. 16.
    D. T. Britton: Proc. R. Soc. London A445, 57 (1994)Google Scholar
  18. 17.
    D. T. Britton, P. Willutzki, W. Triftshäuser, E. Hammerl, W. Hansch, I. Eisele: Appl. Phys. A58, 389 (1994)Google Scholar
  19. 18.
    D. T. Britton, J. Strömer. Appl. Surf. Sci. (submitted)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • P. Willutzki
    • 1
  • J. Störmer
    • 1
  • D. T. Britton
    • 1
  • W. Triftshäuser
    • 1
  1. 1.Institut für Nukleare FestkörperphysikUniversität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations