Skip to main content

Advertisement

Log in

Hepatocellular bile acid transport and ursodeoxycholic acid hypercholeresis

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

This review focuses on mechanisms of bile acid transport across the basolateral and canalicular hepatocyte plasma membranes and on ursodeoxycholic acid (UDCA) hypercholeresis and biotransformation. Conjugated trihydroxy bile acids enter hepatocytes via a sodium-coupled mechanism localized to the basolateral membrane, which is saturable, concentrative, inhibited by other bile acids as well as by furosemide and bumetanide, and exhibits developmental changes in rats and probably also in humans. The stoichiometry of sodium-coupled bile acid uptake has been controversial. Hydrophobic, unconjugated dihydroxy and monohydroxy bile acids, including UDCA, enter hepatocytes more rapidly than does taurocholate, and their uptake is largely nonsaturable and sodium independent. A hydroxyl-exchange mechanism that mediates the uptake of cholic acid has also been reported, but its existence is controversial. Current evidence suggests that a 49-kDa protein mediates Na+-dependent taurocholate uptake and that a 54-kDa protein is involved in Na+-independent bile acid uptake. Studies with canalicular membrane vesicles have demonstrated saturable, sodium-independent taurocholate transport, which is sensitive to electrical potential, exhibits trans-stimulation, and appears to be mediated by a 100-kDa canalicular membrane glycoprotein. Studies in mutant rats with conjugated hyperbilirubinemia suggest the presence of a separate canalicular transport mechanism utilized by sulfated bile acids and organic anions such as bilirubin and sulfobromophthalein. UDCA produces in some species a dramatic hypercholeresis that is greater than expected based on the osmotic effect of the secreted bile acid. The hypercholeresis appears attributable to stimulation of biliary bicarbonate output and is decreased or abolished in the perfused rat liver by amiloride or perfusate Na+ substitution. These same maneuvers dramatically alter UDCA biotransformation (unconjugated UDCA disappears from bile, and UDCA glucuronide becomes a major metabolite) and lower hepatocyte intracellular pH. These and other findings indicate that UDCA hypercholeresis is tightly linked to biliary excretion of the unconjugated species and suggest that UDCA biotransformation may be influenced by intracellular pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scharschmidt BF: Bile formation.In Hepatology, Vol 2. D Zakim, T Boyers (eds). Philadelphia. WB Saunders (in press)

  2. Van Dyke RW, Lake JR, Scharschmidt BF: Cellular mechanisms of hepatic fluid and electrolyte transport.In Handbook of Physiology. SG Schultz (ed). (in press).

  3. Scharschmidt BF, Stephens JF: Transport of sodium, chloride and taurocholate by cultured rat hepatocytes. Proc Natl Acad Sci USA 78:986–990, 1981

    PubMed  Google Scholar 

  4. Suchy FJ, Courchene SM, Blitzer BL: Taurocholate transport by basolateral plasma membrane vesicles isolated from developing rat liver. Am J Physiol 248(Gastrointest Liver Physiol 11):G648-G654, 1985

    PubMed  Google Scholar 

  5. Inoue M, Kinne R, Trau T, Arias IM: Taurocholate transport by rat liver sinusoidal membrane vesicles: Evidence of sodium cotransport. Hepatology 2:572–579, 1982

    PubMed  Google Scholar 

  6. Anwer MS, Hegner D: Effect of Na+ on bile acid uptake by isolated rat hepatocytes. Hoppe Seyler's Z Physiol Chem 359:181–192, 1978

    PubMed  Google Scholar 

  7. Blitzer BL, Ratoosh SL, Donovan CB, Boyer JL: Effects of inhibitors of Na+-coupled ion transport on bile acid uptake by isolated rat hepatocytes. Am J Physiol 243(Gastrointest Liver Physiol 6):G48-G53, 1982

    PubMed  Google Scholar 

  8. Duffy MC, Blitzer BL, Boyer JL: Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles. J Clin Invest 72:1470–1481, 1983

    PubMed  Google Scholar 

  9. Zimmerli B, Valantinas J, Meier PJ: Multispecificity of Na+ dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles. J Pharmacol Exp Ther 250:301–308, 1989

    PubMed  Google Scholar 

  10. Hardison WGM, Bellentani S, Heasley V, Shellhamer D: Specificity of an NA+-dependent taurocholate transport site in isolated rat hepatocytes. Am J Physiol 246(Gastrointest Liver Physiol 9):G477-G483, 1984

    PubMed  Google Scholar 

  11. Edmondson JW, Miller BA, Lument L: Effect of glucagon on hepatic taurocholate uptake: Relationship to membrane potential. Am J Physiol 249(Gastrointest Liver Physiol 12):G427-G433, 1985

    PubMed  Google Scholar 

  12. Fitz JG, Scharschmidt BF: Regulation of hepatocyte membrane potentialin vivo: The effects of glucagon, fasting and alanine on taurocholate transport. Am J Physiol G56–G64, 1987

  13. Fitz JG, Weisiger RA, Scharschmidt BF: Hepatic taurocholate uptake: Electrochemical driving forces in the intact liver. Gastroenterology 92:1732, 1987 (abstract)

    Google Scholar 

  14. Bear CE, Davison JS, Shaffer EA: Sodium-dependent taurocholate uptake by isolated rat hepatocytes occurs through an electrogenic mechanism. Biochim Biophys Acta 903:388–394, 1978

    Google Scholar 

  15. Blitzer BL, Terzakis C, Scott KA: Hydroxyl/bile acid exchange. J Biol Chem 261:12042, 1986

    PubMed  Google Scholar 

  16. Caflisch C, Zimmerli B, Hugentobler G, Meier PJ: pH gradient driven cholate uptake into rat liver plasma membrane vesicles represents nonionic diffusion rather than a carrier mediated process. Gastroenterology 92:1772, 1987 (abstract)

    Google Scholar 

  17. Hugentobler G, Meier PJ: Multispecific anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles. Am J Physiol 251(Gastrointest Liver Physiol 14):G656, 1986

    PubMed  Google Scholar 

  18. Van Dyke RW, Stephens JE, Scharschmidt BF: Bile acid transport in cultured rat hepatocytes. Am J Physiol 243:G484-G492, 1982

    PubMed  Google Scholar 

  19. Lake JR, Van Dyke RW, Scharschmidt BF: Effects of Na+ replacement and amiloride on ursodeoxycholic acid-stimulated choleresis and biliary bicarbonate secretion. Am J Physiol 252:G163-G169, 1987

    PubMed  Google Scholar 

  20. Kramer W, Bickel U, Buscher H-P, Gerok W, Kurz G: Bile-salt-binding polypeptides in plasma membranes of hepatocytes revealed by photoaffinity labelling. Eur J Biochem 129:13–24, 1982

    PubMed  Google Scholar 

  21. Wieland T, Nassal MN, Kramer W, Fricker G, Bickel U, Kurz G: Identity of hepatic membrane transport systems for bile salts, phalloidin, and anatamanide by photoaffinity labeling. Proc Natl Acad Sci USA 81:5232–5236, 1984

    PubMed  Google Scholar 

  22. von Dippe P, Drain P, Levy D: Synthesis and transport characteristics of photoaffinity probes for the hepatocyte bile acid transport system. J Biol Chem 258:8890–8895, 1983

    PubMed  Google Scholar 

  23. von Dippe P, Ananthanarayanan M, Drain P, Levy D: Purification and reconstitution of the bile acid transport system from hepatocyte sinusoidal plasma membranes. Biochim Biophys Acta 862:352–360, 1986

    PubMed  Google Scholar 

  24. Ananthanarayanan M, von Dippe P, Levy D: Identification of the hepatocyte Na+-dependent bile acid transport protein using monoclonal antibodies. J Biol Chem 263:8338–8343, 1988

    PubMed  Google Scholar 

  25. Meier PJ, Meier-Abt AS, Barrett C, et al: Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier. J Biol Chem 259:10614, 1984

    PubMed  Google Scholar 

  26. Inoue M, Kinne R, Trau T, et al: Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system. J Clin Invest 73:659, 1984

    PubMed  Google Scholar 

  27. Gewirtz DA, Randolph JK, Goldman ID: Induction of taurocholate release from isolated rat hepatocytes in suspension by α-adrenergic agents and vasopressin: Implications for control of bile salt secretion. Hepatology 4:205–212, 1984

    PubMed  Google Scholar 

  28. Kuhn WF, Gewirtz DA: Stimulation of taurocholate and glycocholate efflux from the rat hepatocyte by arginine vasopressin. Am J Physiol 254:G732-G740, 1988

    PubMed  Google Scholar 

  29. Weinman SA, Graf J, Boyer, JL: Voltage-driven taurocholate-dependent secretion in isolated hepatocyte couplets. Am J Physiol 256:G826-G832, 1989

    PubMed  Google Scholar 

  30. Kuipers F, Enserink M, van der Steen Ad BM, Hardonk MJ, Fevery J, Vonk RJ: Separate transport systems for biliary secretion of sulfated and unsulfated bile acids. J Clin Invest 81:1593–1599, 1988

    PubMed  Google Scholar 

  31. Elferink RPJ, de Haan J, Lambert K, Hofmann AF, Jansen PLM: Metabolism and biliary excretion of nordeoxycholate in normal and mutant rats. Evidence for separate excretory pathways for unconjugated bile acids. Hepatology 7:1109, 1987 (abstract)

    Google Scholar 

  32. Fricker G, Schneider S, Gerok W, Kurz G: Identification of different transport systems for bile salts in sinusoidal and canalicular membranes of hepatocytes. Biol Chem Hoppe-Seyler 368:1143–1150, 1987

    PubMed  Google Scholar 

  33. Ruetz ST, Fricker G, Hugentobler G, Winterhalter K, Kurz G, Meier PJ: Isolation and characterization of the putative canalicular bile salt transport system of rat liver. J Biol Chem 262:11324–11330, 1987

    PubMed  Google Scholar 

  34. Ruetz ST, Hugentobler G, Meier PJ: Functional reconstitution of the canalicular bile salt transport system of rat liver. Hepatology 7:1105, 1987 (abstract)

    Google Scholar 

  35. Yousef IM, Barnwell S, Gratton F, Tuchweber B, Weber A, Roy CC: Liver cell membrane solubilization may control maximum secretory rate of cholic acid in the rat. Am J Physiol 252:G84-G91, 1987

    PubMed  Google Scholar 

  36. Hardison WGM, Hatoff DE, Miyai K, Weiner RG: Nature of bile acid maximum secretory rate in the rat. Am J Physiol 241(Gastrointest Liver Physiol 4):G337-G343, 1981

    PubMed  Google Scholar 

  37. Zouboulis-Vafiadis I, Dumont M, Erlinger S: Conjugation is rate limiting in the hepatic transport of ursodeoxycholate in the rat. Am J Physiol 243:(Gastrointest Liver Physiol 6):G208, 1982

    PubMed  Google Scholar 

  38. Crawford JM, Berken CA, Gollan JL: Role of the hepatocyte microtubular system in the excretion of bile salts and biliary lipid: Implications for intracellular vesicular transport. J Lipid Res 29:144–156, 1988

    PubMed  Google Scholar 

  39. Gregory DH, Vlahcevic ZR, Prugh MF, et al: Mechanism of secretion of biliary lipids: Role of a microtubular system in hepatocellular transport of biliary lipids in the rat. Gastroenterology 74:93, 1978

    PubMed  Google Scholar 

  40. Sakisaka S, Ng OC, Boyer JL: Tubulovesicular transcytotic pathway in isolated rat hepatocyte couplets in culture. Gastroenterology 95:793–804, 1988

    PubMed  Google Scholar 

  41. Gurantz D, Hofmann AF: Influence of bile acid structure on bile flow and biliary lipid secretion in the hamster. Am J Physiol 247:G736-G748, 1984

    PubMed  Google Scholar 

  42. Dumont M, Erlinger S, Uchman S: Hypercholeresis induced by ursodeoxycholic acid and 7-ketolithocholic acid in the rat: Possible role of bicarbonate transport. Gastroenterology 79:82–89, 1980

    PubMed  Google Scholar 

  43. Kitani K, Kanai S: Effect of ursodeoxycholate on the bile flow in the rat. Life Sci 31:1973–1985, 1982

    PubMed  Google Scholar 

  44. Yoon YB, Hagey LR, Hofmann AF, Gurantz D, Michelotti EL, Steinbach JH: Effect of side-chain shortening on the physiologic properties of bile acids: Hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents. Gastroenterology 90:837–852, 1986

    PubMed  Google Scholar 

  45. Palmer KR, Gurantz D, Hofmann AF, Clayton LM, Hagey LR, Cecchetti S: Hypercholeresis induced by nor-chenodeoxycholate in the biliary fistula rodent. Am J Physiol 252:G219-G228, 1987

    PubMed  Google Scholar 

  46. Yoon YB, Gurantz D, Hofmann AF, Clayton LM, Hagey LR, Cecchetti S: Hypercholeresis induced by nor-chenodeoxycholate in the biliary fistula rodent. Am J Physiol 252:G219-G228, 1987

    PubMed  Google Scholar 

  47. Gurantz D, Clayton L, Hagey LR, Yoon YB, Hofmann AF: Hypercholeresis induced by unconjugated dihydroxy bile acid infusion requires biliary secretion of unconjugated bile acids. Hepatology 5:1023, 1985 (abstract)

    Google Scholar 

  48. Cabral DJ, Small DM, Lily HS, Hamilton JA: Transbilayer movement of bile acids in model membranes. Biochemistry 26:1801–1804, 1987

    PubMed  Google Scholar 

  49. Hofmann AF, Gurantz D, Hagey LR, et al: The relationship between bile acid biotransformation and bile acid dependent bile flow.In Bile Acids and the Liver. Paumgartner G, Steihl A, Gerok W (eds). Lancaster, UK, MTP Press, 1987

    Google Scholar 

  50. Moseley RH, Meier PJ, Aronson PS, Boyer JL: Na+/H+ exchange in rat liver basolateral but not canalicular plasma membrane vesicles. Am J Physiol 250:G35-G43, 1986

    PubMed  Google Scholar 

  51. Arias IM, Forgac M: The sinusoidal domain of the plasma membrane of rat hepatocytes contains an amiloride-sensitive Na+/H+ antiport. J Biol Chem 259:5406–5408, 1984

    PubMed  Google Scholar 

  52. Henderson RM, Graf J, Boyer JL: Na-H exchange regulates intracellular pH in isolated rat hepatocyte couplets. Am J Physiol 252(Gastrointestinal Liver Physiol 15):G109-G113, 1987

    PubMed  Google Scholar 

  53. Renner EL, Lake JR, Persico M, Scharschmidt BF: Na+/H+ exchange activity in rat hepatocytes: role in regulation of intracellular pH. Am J Physiol 256(Gastrointest Liver Physiol 19):G44-G52, 1989

    PubMed  Google Scholar 

  54. Moseley RH, Ballatori N, Smith DJ, Boyer JL: Ursodeoxy-cholate stimulates Na+-H+ exchange in rat liver basolateral plasma membrane vesicles. J Clin Invest 80:684–690, 1987

    PubMed  Google Scholar 

  55. Meier PJ, Knickelbein R, Moseley RH, et al: Evidence for carrier-mediated Cl:HCO3 exchange in canalicular rat liver plasma membrane vesicles. J Clin Invest 75:1256, 1985

    PubMed  Google Scholar 

  56. Renner EL, Lake JR, Cragoe EJ Jr, Scharschmidt BF: Amiloride and amiloride analogs inhibit Na+/K+-transporting ATPase and Na+-coupled alanine transport in rat hepatocytes. Biochim Biophys Acta 938:386–394, 1988

    PubMed  Google Scholar 

  57. Renner EL, Lake JR, Cragoe EJ Jr, Van Dyke RW, Scharschmidt BF: Ursodeoxycholic acid (UDCA) choleresis: relationship to biliary HCO3 secretion and evidence of a role for Na+/H+ exchange. Am J Physiol 254:G232-G241, 1988

    PubMed  Google Scholar 

  58. Gautam A, Ng OC, Strazzabosco M, Boyer JL: Quantitative assessment of canalicular bile formation in isolated hepatocyte couplets using microscopic optical planimetry. J Clin Invest 83:565–573, 1989

    PubMed  Google Scholar 

  59. Lake JR, Renner EL, Scharschmidt BF, Cragoe EJ Jr, Hagey LR, Lambert KJ, Gurantz D, Hofmann AF: Inhibition of Na+/H+ exchange in the rat is associated with decreased ursodeoxycholate hypercholeresis, decreased secretion of unconjugated ursodeoxycholate, and increased ursodeoxycholate glucuronidation. Gastroenterology 95:454–463, 1988

    PubMed  Google Scholar 

  60. Takikawa H, Otsuka H, Beppu T, Seyama Y, Yamakawa T: Serum concentrations of bile acid glucuronides in hepatobiliary diseases. Digestion 27:189–195, 1983

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH grants AM-26270, AM-26743 (Liver Core Center), DK-01858 Clinical Investigator Award (J.R.L.), and an AGA Industry Research Award (J.R.L.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scharschmidt, B.F., Lake, J.R. Hepatocellular bile acid transport and ursodeoxycholic acid hypercholeresis. Digest Dis Sci 34 (Suppl 12), S5–S15 (1989). https://doi.org/10.1007/BF01536656

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01536656

Key words

Navigation