Skip to main content
Log in

High-frequency reactivation of X-linked genes in chinese hamster × human hybrid cells

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Three genes on the human inactive X chromosome retained in the Chinese hamster x human hybrid cell line X8/6T2 have been reactivated using the demethylating agent, 5-azacytidine (5-aza-CR). Pulse-labeling and histochemical methods permitted detection and measurement of reactivation rates of the hypoxanthine phosphoribosyltransferase (Hpt) and glucose-6-phosphate dehydrogenase (G6pd) genes within 48 h of treatment. About 50% of the cells became active for these genes, which represents a reactivation rate some 30-fold greater than previously reported in similar systems. The phosphoglycerate kinase (Pgk) gene was not reactivated as frequently as the Hptor G6pdgenes. Segregation analysis of progeny of treated cells showed that enzyme-positive and enzyme-negative cells were produced in proportions supporting the notion that 5-aza-CR causes demethylation by replicative loss and that demethylation leads to reactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Lyon, M.F. (1973).Biol. Rev. 47:1–35.

    Google Scholar 

  2. Gartler, S.M., and Riggs, A.D. (1983).Annu. Rev. Genet. 17:155–190.

    PubMed  Google Scholar 

  3. Gartler, S.M., and Andina, R.J. (1976). InAdvances in Human Genetics, Vol. 7, (eds.) Harris, H., and Hirschhorn, K. (Plenum Press, New York), pp. 99–140.

    Google Scholar 

  4. Salzmann, J., DeMars, R., and Burke, P. (1968).Proc. Natl. Acad. Sci. U.S.A. 60:545–552.

    PubMed  Google Scholar 

  5. DeMars, R. (1968).Proc. Natl. Acad. Sci. U.S.A. 61:562–569.

    PubMed  Google Scholar 

  6. Migeon, B.R. (1972).Nature 239:87–89.

    PubMed  Google Scholar 

  7. Kahan, B., and DeMars, R. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1510–1514.

    PubMed  Google Scholar 

  8. Riggs, A.D. (1975).Cytogenet. Cell Genet. 14:9–25.

    PubMed  Google Scholar 

  9. Holliday, R., and Pugh, J.E. (1982).Science 187:226–232.

    Google Scholar 

  10. Liskay, R.M., and Evans, R.J. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:4895–4898.

    PubMed  Google Scholar 

  11. Chapman, V.M., Kratzer, P.G., Siracusa, L.D., Quarantillo, B.A., Evans, R., and Liskay, R.M. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:5357–5361.

    PubMed  Google Scholar 

  12. Venolia, L., Gartler, S.M., Wassman, E.R., Yen, P., Mohandas, T., and Shapiro, L.J. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:2352–2354.

    PubMed  Google Scholar 

  13. Lester, S.C., Korn, N.J., and DeMars, R. (1982).Somat. Cell Genet. 8:265–284.

    PubMed  Google Scholar 

  14. Mohandas, T., Sparkes, R.S., and Shapiro, L.J. (1981).Science 112:393–396.

    Google Scholar 

  15. Graves, J.A.M., and Young, G.J. (1982).Exp. Cell Res. 141:87–97.

    PubMed  Google Scholar 

  16. Hors-Cayla, M.C., Heuertz, S., and Frezal, J. (1983).Somat. Cell Genet. 9:645–657.

    PubMed  Google Scholar 

  17. Wolf, S.F., Jolly, D.J., Lunnen, K.D., Friedman, T., and Migeon, B. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:2806–2810.

    PubMed  Google Scholar 

  18. Yen, P.H., Patel, P., Chinault, A.C., Mohandas, T., and Shapiro, L. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:1759–1763.

    PubMed  Google Scholar 

  19. Toniolo, D., D'Urso, M., Martini, G., Persico, G., Tufano, V., Battistuzzi, G., and Luzzato, L. (1984).EMBO J. 3:1987–1995.

    PubMed  Google Scholar 

  20. Riggs, A.D., Singer-Sam, J., and Keith, D.H. (1985). InBiochemistry and Biology of DNA Methylation,(eds.) Cantoni, G.L., and Razin, A. (Alan R. Liss, New York), pp. 211–222.

    Google Scholar 

  21. Yen, P.H., Mohandas, T., and Shapiro, L.J. (1986).Somat. Cell Mol. Genet. 12:153–161.

    PubMed  Google Scholar 

  22. Lindsay, S., Monk, M., Holliday, R., Huschtscha, L., Davies, K.E., Riggs, A.D., and Flavell, R.A. (1985).Ann. Hum. Genet. 49:115–127.

    PubMed  Google Scholar 

  23. Lock, L.F., Melton, D.W., Caskey, C.T., and Martin, G.R. (1986).Mol. Cell. Biol. 6:914–924.

    PubMed  Google Scholar 

  24. Wolf, S.F., and Migeon, B.R. (1982).Nature 295:667–671.

    PubMed  Google Scholar 

  25. Kratzer, P.G., Chapman, V., Lambert, H., Evans, R.W., and Liskey, R.M. (1983).Cell 33:37–42.

    PubMed  Google Scholar 

  26. Paterno, G., Adra, C.N., and McBurney, M.W. (1985).Mol. Cell. Biol. 5:2705–2715.

    PubMed  Google Scholar 

  27. Gartler, S.M., Dyer, K.A., Graves, J.A.M., and Rocchi, M. (1985). InBiochemistry and Biology of DNA Methylation, (eds.) Cantoni, G.L., and Razin, A. (Alan R. Liss, New York), pp. 233–235.

    Google Scholar 

  28. Dracopoli, N.C., Rettig, W.J., Albino, A.P., Esposito, D., Archidiacono, N., Rocchi, M., Siniscalco, M., and Old, L.D. (1985).Am. J. Hum. Genet. 37:199–207.

    PubMed  Google Scholar 

  29. Rosenstraus, E., and Chasin, L.A. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:493–497.

    PubMed  Google Scholar 

  30. Archidiacono, N., Rocchi, M., Valente, M., and Fillipi, G. (1979).Hum. Genet. 52:69–77.

    PubMed  Google Scholar 

  31. Mosley, S.T., Brown, M.S., Anderson, R.G.W., and Goldstein, J.L. (1983).J. Biol. Chem. 258:13875–13881.

    PubMed  Google Scholar 

  32. Wajntal, A., and DeMars, R. (1967).Biochem. Genet. 1:61–71.

    PubMed  Google Scholar 

  33. Meera Khan, P. (1971).Arch. Biochem. Biophys. 145:470–483.

    PubMed  Google Scholar 

  34. Reddy, A.L., Caldwell, M., and Fialkow, P.J. (1987).Int. J. Cancer 39:261–265.

    PubMed  Google Scholar 

  35. Goto, K., Maeda, S., Kano, Y., and Sugiyama, T. (1978).Chromosoma 66:351–359.

    PubMed  Google Scholar 

  36. Willard, H.F. (1977).Chromosoma 61:61–73.

    PubMed  Google Scholar 

  37. Schimke, R.T., Sherwood, S.W., Hill, A.B., and Johnston, R.N. (1986).Proc. Natl. Acad. Sci. U.S.A. 83:2157–2161.

    PubMed  Google Scholar 

  38. Hill, A.B., and Schimke, R.T. (1985).Cancer Res. 45:5050–5057.

    PubMed  Google Scholar 

  39. Goodfellow, P.N., Davies, K.E., and Ropers, H.-H. (1985).Cytogenet. Cell Genet. 40:296–352.

    PubMed  Google Scholar 

  40. Jones, P.A., and Taylor, S.M. (1980).Cell 20:85–93.

    PubMed  Google Scholar 

  41. Compere, S.J., and Palmiter, R.D. (1981).Cell 25:233–240.

    PubMed  Google Scholar 

  42. Creusot, F., Acs, G., and Christman, J.K. (1982).J. Biol. Chem. 257:2041–2048.

    PubMed  Google Scholar 

  43. Razin, A., Szyf, M., Kafri, T., Roll, M., Giloh, H., Scarpa, S., Carotti, D., and Cantoni, G.L. (1986).Proc. Natl. Acad. Sci. U.S.A. 83:2827–2831.

    PubMed  Google Scholar 

  44. Schmidt, M., Wolf, S.F., and Migeon, B.R. (1985).Exp. Cell. Res. 158:301–310.

    PubMed  Google Scholar 

  45. Jablonka, E., Goitein, R., Marcus, M., and Cedar, H. (1985).Chromosoma 93:152–156.

    PubMed  Google Scholar 

  46. Shafer, D.A., and Priest, J.H. (1984).Am. J. Hum. Genet. 36:534–545.

    PubMed  Google Scholar 

  47. Goldman, M.A., Holmquist, G.P., Gray, M.C., Caston, L.A., and Nag, A. (1984).Science 224:686–692.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, N., Keitges, E., Gartler, S.M. et al. High-frequency reactivation of X-linked genes in chinese hamster × human hybrid cells. Somat Cell Mol Genet 13, 191–204 (1987). https://doi.org/10.1007/BF01535202

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01535202

Keywords

Navigation