Skip to main content
Log in

Synergistic enzyme induction by glucocorticoids and cyclic AMP observed in glioma x hepatoma cell hybrids but not in their parents

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Enzyme induction by hydrocortisone (HC) and dibutyryl cyclic AMP (dbcAMP) was studied in C6 rat glioma cells, FU5AH rat hepatoma cells, and five C6 x FU5AH hybrids. Hormone responsive enzymes from both parental lines were studied, including: tyrosine aminotransferase (TAT), alanine aminotransferase (AAT), glycerol phosphate dehydrogenase (GPDH), lactate dehydrogenase (LDH), and 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP). There was no overall dominance of one parental phenotype over the other in expression of uninduced or induced enzyme activity after fusion, and the hybrids possessed some enzymatic properties characteristic of both parents. GPDH was induced by dbcAMP in all five hybrids, and TAT was induced by dbcAMP in four of the hybrids, although neither of these enzymes were induced by dbcAMP in the parents. Furthermore, synergistic induction of these enzymes by HC and dbcAMP was observed in the hybrids but not in the parents. These hybrids provide a model system to study hormone interaction in enzyme induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Krone, W., Huttner, W.B., Seitz, HJ., and Tarnowski, W. (1974).FEBS Lett. 52:85–89.

    Google Scholar 

  2. Ruiz, J.P.G., Ingram, R., and Hanson, R.W. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:4189–4193.

    PubMed  Google Scholar 

  3. Mencher, D., and Reshef, L. (1979).Eur. J. Biochem. 94:581–589.

    PubMed  Google Scholar 

  4. Diesterhaft, M., Noguchi, T., and Granner, D. (1980).Eur. J. Biochem. 108:357–365.

    PubMed  Google Scholar 

  5. Steele, J.G., McGrath, M.C., Yeoh, G.C.T., and Oliver, I.T. (1980).Eur. J. Biochem. 104:91–99.

    PubMed  Google Scholar 

  6. Evans, P.J. (1981).Biochim. Biophys. Acta 677:433–444.

    PubMed  Google Scholar 

  7. Steinberg, R.A., Scott, W.A., Levinson, B.B., Ivarie, R.D., and Tomkins, G.M. (1974). InRegulation of Gene Expression in Eukaryotic Cells, (eds.) Harris, M., and Thompson, B. (Dept. of Health, Education and Welfare, Washington, D.C.), pp. 55–70.

    Google Scholar 

  8. van Rijn, H., Bevers, M.M., van Wijk, R., and Wicks, W.D. (1974).J. Cell Biol. 60:181–191.

    PubMed  Google Scholar 

  9. Krone, W., Huttner, W.B., Seitz, H.J., and Tarnowski, W. (1974).FEBS Lett. 46:158–161.

    PubMed  Google Scholar 

  10. Wicks, W.D. (1969).J. Biol. Chem. 244:3941–3950.

    PubMed  Google Scholar 

  11. Wicks, W.D., Barnett, C.A., and McKibbin, J.B. (1974).Fed. Proc. 33:1105–1111.

    PubMed  Google Scholar 

  12. Hoshino, J., Studinger, G., and Kroger, H. (1981).J. Steroid Biochem. 14:149–154.

    PubMed  Google Scholar 

  13. Ruiz-Bravo, N., and Ernest, M.J. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:365–368.

    PubMed  Google Scholar 

  14. Krone, W., Marquardt, W., Seitz, H.J., and Tarnowski, W. (1976).Biochim. Biophys. Acta 451:72–81.

    PubMed  Google Scholar 

  15. Granner, D., Olson, P., Seifert, S., Block, C., Diesterhaft, M., Hargrove, J., and Noguchi, T. (1980).Ann. N.Y. Acad. Sci. 349:183–194.

    PubMed  Google Scholar 

  16. Exton, J.H., Friedman, N., Wong, E.H.-A., Brieneaux, J.P., Corbin, J.D., and Park, C.R. (1972).J. Biol. Chem. 247:3579–3588.

    PubMed  Google Scholar 

  17. Stumpo, D.J., and Kletzien, R.F. (1980).J. Cell. Physiol. 107:11–19.

    Google Scholar 

  18. Postle, A.D., and Bloxham, D.P. (1982).Eur. J. Biochem. 124:103–108.

    PubMed  Google Scholar 

  19. Noda, D., Nakamura, T., and Icihara, A. (1981).Biochem. Biophys. Res. Commun. 100:65–72.

    PubMed  Google Scholar 

  20. Breen, G.A.M., McGinnis, J.F., and de Vellis, J. (1978).J. Biol. Chem. 253:2554–2562.

    PubMed  Google Scholar 

  21. Croce, C.M., Litwack, G., and Koprowski, H. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:1268–1272.

    PubMed  Google Scholar 

  22. Patnaik, S.K., and Kanungo, M.S. (1974).Biochem. Biophys. Res. Commun. 56:845–850.

    PubMed  Google Scholar 

  23. Lee, K.-L., and Kenney, F.T. (1970).Biochem. Biophys. Res. Commun. 40:469–475.

    PubMed  Google Scholar 

  24. Meyer, R.D., Preston, S.L., and McMorris, F.A. (1983).J. Cell. Physiol. 114:203–208.

    PubMed  Google Scholar 

  25. de Vellis, J., Inglish, D., Cole, R., and Molson, J. (1971). InInfluence of Hormones on the Nervous System, (ed.) Ford, D.H. (S. Karger, Basel) pp. 25–39.

    Google Scholar 

  26. Derda, D.F., Miles, M.F., Schweppe, J.S., and Jungmann, R.A. (1980).J. Biol. Chem. 225:11112–11121.

    Google Scholar 

  27. McMorris, F.A. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:4501–4504.

    PubMed  Google Scholar 

  28. Benda, P., Lightbody, J., Sato, G., Levine, L., and Sweet, W. (1968).Science 161:370–371.

    PubMed  Google Scholar 

  29. Schneider, J.A., and Weiss, M.C. (1971).Proc. Natl. Acad. Sci. U.S.A. 68:127–131.

    PubMed  Google Scholar 

  30. Reuber, M.D. (1961).J. Natl. Cancer Inst. 26:891–897.

    PubMed  Google Scholar 

  31. Kozak, L.P., and Jensen, J.T. (1974).J. Biol. Chem. 249:7775–7781.

    PubMed  Google Scholar 

  32. de Vellis, J., Schjeide, O.A., and Clemente, C.D. (1967).J. Neurochem. 14:499–511.

    PubMed  Google Scholar 

  33. Segal, M.L., and Matsuzawa, T. (1970).Methods Enzymol. 17A:153–166.

    Google Scholar 

  34. Diamondstone, T.I. (1966).Anal. Biochem. 16:395–401.

    Google Scholar 

  35. Granner, D.K., and Tomkins, G.M. (1970).Methods Enzymol. 17A:633–637.

    Google Scholar 

  36. Prohaska, J.R., Clark, D.A., and Wells, W.W. (1973).Anal. Biochem. 56:275–282.

    PubMed  Google Scholar 

  37. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951).J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  38. Davidson, R.L., and Gerald, P.S. (1976).Somat. Cell Genet. 2:165–176.

    PubMed  Google Scholar 

  39. O'Malley, K.A., and Davidson, R.L. (1977).Somat. Cell Genet. 3:441–448.

    PubMed  Google Scholar 

  40. Littlefield, J.W. (1964).Science 145:709–710.

    PubMed  Google Scholar 

  41. Snell, K. (1971).Biochem. J. 123:657–659.

    PubMed  Google Scholar 

  42. Thompson, E.B., Dannies, P.S., Buckler, C.E., and Tashjian, A.H., Jr. (1980).J. Steroid Biochem. 12:193–210.

    PubMed  Google Scholar 

  43. Conscience, J.-F., Ruddle, F.H., Skoultchi, A., and Darlington, G.J. (1977).Somat. Cell Genet. 3:157–172.

    PubMed  Google Scholar 

  44. Fougere, C., and Weiss, M.C. (1978).Cell 15:843–854.

    PubMed  Google Scholar 

  45. Descharette, J., Moore, E.E., Dubois, M., Cassio, D., and Weiss, M.C. (1979).Somat. Cell Genet. 5:697–718.

    PubMed  Google Scholar 

  46. Sahib, M.K., Jost, Y.-C., and Jost, J.-P. (1971).J. Biol. Chem. 246:4539–4545.

    Google Scholar 

  47. Leichtling, B.H., Koontz, J., Su, J.L., Wagner, K., Roper, M.D., Wimalasena, J., and Wicks, W.D. (1978).Arch. Biochem. Biophys. 185:525–534.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, R.D., McMorris, F.A. Synergistic enzyme induction by glucocorticoids and cyclic AMP observed in glioma x hepatoma cell hybrids but not in their parents. Somat Cell Mol Genet 10, 153–159 (1984). https://doi.org/10.1007/BF01534904

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534904

Keywords

Navigation