Somatic Cell and Molecular Genetics

, Volume 15, Issue 3, pp 245–253 | Cite as

Construction of microcell hybrid panel containing differentNeo gene insertions in mouse chromosome 17 used for chromosome-mediated gene transfer

  • T. S. Sidén
  • M. Höglund
  • D. Röhme


A panel of four microcell hybrids representing different sites of insertion of the exogeneous neogene into mouse chromosome 17 has been constructed. These constructions were based on a cotransfer of mouse chromosome 17 and neomycin resistance generated in a stepwise procedure involving (1) random insertion of the neogene into a primary cell hybrid containing mouse chromosome 17 in a hamster cell background, (2) microcell-mediated chromosome transfer (MMCT) to segregate mouse and hamster chromosomes, and (3) identification of the mouse chromosome containing cells using a novel cell dotting procedure for mass screening at the cell colony level by molecular hybridization. Using this panel of four microcell hybrids for chromosome mediated gene transfer (CMGT), we obtained one transformant containing a chromosome fragment derived from the t-complex region located on mouse chromosome 17. It is concluded that the specific chromosome based procedure used here to generate CMGT transfectants may provide a general means to produce large numbers of transfectants containing megabase fragments covering, in principle, all regions of a given chromosome.


Primary Cell Neomycin Cell Hybrid Mouse Chromosome Mass Screening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Saxon, P.J., Srivatsan, E.S., Leipzig, G.V., Sameshima, J.H., and Stanbridge, E.J. (1985).Mol. Cell. Biol. 5:140–145.PubMedGoogle Scholar
  2. 2.
    White, R., Leppert, M., Bishop, D.T., Barker, D., Berkowitz, J., Brown, C., Callahan, P., Holm, T., and Jerominski, L. (1985).Nature 313:101–105.PubMedGoogle Scholar
  3. 3.
    Weissman, B.E., Saxon, P.J., Pasquale, S.R., Jones, G.R., Geiser, A.G., and Stanbridge, E.J. (1987).Science 236:175–180.PubMedGoogle Scholar
  4. 4.
    Killary, A.M., and Fournier, R.E.K. (1984).Cell 38:523–534.PubMedGoogle Scholar
  5. 5.
    Petit, C., Levilliers, J., Ott, M.-O., Weiss, M.-O., and Weiss, M.C. (1986).Proc. Natl. Acad. Sci. U.S.A. 83:2561–2565.PubMedGoogle Scholar
  6. 6.
    Ege, T., and Ringertz, N. (1974).Exp. Cell Res. 87:378–382.PubMedGoogle Scholar
  7. 7.
    Fournier, R.E.K. (1981).Proc. Natl. Acad. Sci. U.S.A. 78:6349–6353.PubMedGoogle Scholar
  8. 8.
    Fournier, R.E.K., and Freelinger, J.A. (1982).Mol. Cell. Biol. 2:526–534.PubMedGoogle Scholar
  9. 9.
    Cepko, C.L., Roberts, B.E., and Mulligan, R.C. (1984).Cell 37:1053–1062.PubMedGoogle Scholar
  10. 10.
    Southern, P.J., and Berg, P. (1982).J. Mol. Appl. Genet. 4:327–341.Google Scholar
  11. 11.
    de Jonge, A.J.R., and Bootsma, D. (1984).Int. Rev. Cytol. 92:133–158.Google Scholar
  12. 12.
    Estivill, X., Farral, M., Scambler, P.J., Bell, G.M., Hawley, K.F.M., Bates, G.P., Kruyer, H.C., Frederick, P.A., Stanier, P., Watson, E.K., Williamson, R., and Wainwright, B.J. (1987).Nature 26:840–846.Google Scholar
  13. 13.
    Gusella, J.F., Jones, C., Kao, F-T., Housman, H., and Puck, T.T. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:7804–7808.PubMedGoogle Scholar
  14. 14.
    Murphy, P.D., and Ruddle, F.H. (1985).Somat. Cell. Mol. Genet. 11:433–444.PubMedGoogle Scholar
  15. 15.
    Weis, J.H., Nelson, D.L., Przyborski, M.J., Chaplin, D.D., Mulligan, R.C., Housman, D.E., and Seidman, J.G. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:4879–4883.PubMedGoogle Scholar
  16. 16.
    Pritchard, C.A., and Goodfellow, P.N. (1986).EMBO. J. 5:979–985.PubMedGoogle Scholar
  17. 17.
    Scambler, P.J., Law, H.-Y., Williamson, R., and Cooper, C.S. (1986).Nucleic Acids Res. 14:7159–7174.PubMedGoogle Scholar
  18. 18.
    Gillin, F.D., Roufa, D.J., Beaudet, A.L., and Caskey, C.T. (1972).Genetics 72:239–252.PubMedGoogle Scholar
  19. 19.
    Leder, A., Swan, D., Ruddle, F., D'Eustachio, P., and Leder, P. (1981).Nature 293:196–200.PubMedGoogle Scholar
  20. 20.
    Gorman, C., Padmanabhan, R., and Howard, B.H. (1983).Science 221:551–553.PubMedGoogle Scholar
  21. 21.
    Crenshaw, A.H., Shay, J.W., and Murrel, L.R. (1981).J. Ultrastruct. Res. 75:179–186.PubMedGoogle Scholar
  22. 22.
    Mercer, W.E., and Schlegel, R.A. (1979).Exp. Cell Res. 120:417–421.PubMedGoogle Scholar
  23. 23.
    Röhme, D., Fox, H., Herrman, B., Frischauf, A.-H., Edström, J.-E., Mains, P., Silver, L., and Lehrach, H. (1984).Cell 36:783–788.PubMedGoogle Scholar
  24. 24.
    Feinberg, A.P., and Vogelstein, B. (1983).Anal. Biochem. 132:6–13.PubMedGoogle Scholar
  25. 25.
    Miller, C.L., and Ruddle, F.H. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:3346–3350.PubMedGoogle Scholar
  26. 26.
    Porteus, D.J., Morten, J.E.N., Cranston, G., Fletcher, J.M., Mitchell, A., van Heyningen, V., Fantes, J.A. Boyd, P.A., and Hastie, N.D. (1986).Mol. Cell. Biol. 6:2223–2232.PubMedGoogle Scholar
  27. 27.
    Pritchard, C.A., and Goodfellow, P.N. (1987).Gen. Dev. 1:172–178.Google Scholar
  28. 28.
    Lugo, T.G., Handelin, B., Killary, A.M., Housman, D.E., and Fournier, R.E.K. (1987).Mol. Cell. Biol. 7:2814–2820.PubMedGoogle Scholar
  29. 29.
    Tunnacliffe, A., Parkar, M., Povey, S., Bengtsson, B.-O., Stanley, K., Solomon, E., and Goodfellow, P.EMBO. J. 9:1577–1584.Google Scholar
  30. 30.
    Murphy, P.D., Miller, C.L., and Ruddle, F.H. (1985).Cytogenet. Cell. Genet. 39:125–133.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • T. S. Sidén
    • 1
  • M. Höglund
    • 1
  • D. Röhme
    • 1
  1. 1.Department of Molecular Genetics, Institute of GeneticsUniversity of LundLundSweden

Personalised recommendations