Somatic Cell and Molecular Genetics

, Volume 15, Issue 3, pp 237–244 | Cite as

Sequence analysis of mouse mitochondrial chloramphenicol-resistant mutants

  • Neil Howell
  • Alice Lee


The nucleotide sequences of the 3′ halves of the mitochondrial 16S rRNA genes from four independent mouse chloramphenicol-resistant (CAP-R) mutants were determined. Each contained a different, single base change that encodes the mutational phenotype. The mitochondrial rRNAgene from the SVA31 CAP-R mutant contains a G-to-A transition at nucleotide 2161 of the noncoding strand; the SVIS CAP-R mutant, a G-to-A transition at position 2375; the LA9 CAP-R mutant, an A-to-T transversion at position 2379; and the SVT2 CAP-R mutant, a T-to-C transition at position 2433. Three of these CAP-R mutants appear to be heteroplasmic as the mtDNA populations contain both wild-type and mutant copies of the rRNAgene. The SVIS CAP-R mutation has not been observed in other mammalian CAP-R mutants, although it occurs at a site homologous to one of the yeast mitochondrial CAP-R mutations. Based upon the locations of the mutated sites within the 16S rRNA, and their proximity to previously analyzed sites of mutations conferring increased inhibitor resistance, all these mutations occur within the ribosomal RNA peptidyltransferase domain. These results provide an explanation for the pleiotropic nature of mitochondrial CAP-R mutations in mammalian cells, particularly the observations that some of the mutant lines are partially respiration deficient.


Nucleotide Mammalian Cell Mutant Line Base Change Mutational Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Wallace, D.C. (1982). InTechniques in Somatic Cell Genetics, (ed.) Shay, J.W. (Plenum Press, New York), pp. 159–187.Google Scholar
  2. 2.
    Howell, N., and Sager, R. (1979).Somat Cell Genet. 5:833–845.PubMedGoogle Scholar
  3. 3.
    Howell, N. (1983).Somat Cell Genet. 9:1–24.PubMedGoogle Scholar
  4. 4.
    Harris, M. (1980).Somat Cell Genet. 6:699–708.Google Scholar
  5. 5.
    Freeman, K.B., and Haldar, D. (1968).Can. J. Biochem. 46:1003–1008.PubMedGoogle Scholar
  6. 6.
    Howell, N., and Nalty, M.S. (1988).Somat Cell Mol. Genet. 14:185–193.PubMedGoogle Scholar
  7. 7.
    Ferris, S.D., Sage, R.D., Prager, E.M., Ritte, U., and Wilson, A.C. (1983).Genetics 105:681–721.PubMedGoogle Scholar
  8. 8.
    Howell, N., Nalty, M.S., and Appel, J. (1986).Plasmid 16:77–80.PubMedGoogle Scholar
  9. 9.
    Bibb, M.J., Van Etten, R.A., Wright, C.T., Walberg, M.W., and Clayton, D.A. (1981).Cell 26:161–180.Google Scholar
  10. 10.
    Crouse, G.F., Frischauf, A., and Lehrach, H. (1983).Methods Enzymol. 101:78–89.PubMedGoogle Scholar
  11. 11.
    Messing, J. (1983).Methods Enzymol. 101:20–78.PubMedGoogle Scholar
  12. 12.
    Biggin, M.D., Gibson, J.J., and Hong, G.F. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:3963–3965.PubMedGoogle Scholar
  13. 13.
    Howell, N., and Howell, B. (1988).J. Mol. Biol. 203:618.Google Scholar
  14. 14.
    Howell, N., and Gilbert, K. (1988).J. Mol. Biol. 203:607–617.PubMedGoogle Scholar
  15. 15.
    Wu, H.-M., and Crothers, D.M. (1984).Nature 308:509–513.PubMedGoogle Scholar
  16. 16.
    Chen, J.-H., Seeman, N.C., and Kallenbach, N.R. (1988).Nucleic Acids Res. 16:6803–6812.PubMedGoogle Scholar
  17. 17.
    Howell, N., Appel, J., Cook, J.P., Howell, B., and Hauswirth, W.W. (1987).J. Biol. Chem. 262:2411–2414.PubMedGoogle Scholar
  18. 18.
    Singh, G., Neckelman, N., and Wallace, D.C. (1987).Nature 329:270–272.PubMedGoogle Scholar
  19. 19.
    Dujon, B. (1980).Cell 20:185–197.PubMedGoogle Scholar
  20. 20.
    Kearsey, S.E., and Craig, I.W. (1981).Nature 290:607–608.PubMedGoogle Scholar
  21. 21.
    Blanc, H., Adams, C.A., and Wallace, D.C. (1981).Nucleic Acids Res. 9:5785–5795.PubMedGoogle Scholar
  22. 22.
    Slott, E.F., Jr., Shade, R.O., and Lansman, R.A. (1983).Mol. Cell Biol. 3:1694–1702.PubMedGoogle Scholar
  23. 23.
    Blanc, H., Wright, C.T., Bibb, M.J., Wallace, D.C., and Clayton, D.A. (1981).Proc. Natl. Acad. Sci. U.S.A. 78:3789–3793.PubMedGoogle Scholar
  24. 24.
    Ettayebi, M., Prasad, S.M., and Morgan, E.A. (1985).J. Bacteriol. 162:551–557.PubMedGoogle Scholar
  25. 25.
    Sigmund, C.D., Ettayebi, M., and Morgan, E.A. (1984).Nucleic Acids Res. 12:4653–4663.PubMedGoogle Scholar
  26. 26.
    Skinner, R., Cundliffe, E., and Schmidt, F.J. (1983).J. Biol. Chem. 258:12702–12706.PubMedGoogle Scholar
  27. 27.
    Sor, F., and Fukuhara, H. (1982).Nucleic Acids Res. 10:6571–6577.PubMedGoogle Scholar
  28. 28.
    Towers, N.R., Dixon, H., Kellerman, G.M., and Linnane, A.W. (1972)Arch. Biochem. Biophys. 151:361–369.Google Scholar
  29. 29.
    Doersen, C.-J., and Stanbridge, E.J. (1982).Biochim. Biophys. Acta 698:62–69.PubMedGoogle Scholar
  30. 30.
    Doersen, C.-J., and Stanbridge, E.J. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:4549–4553.PubMedGoogle Scholar
  31. 31.
    Koike, K., Taira, M., Kuchino, Y., Yaginuma, K., Sekiguchi, T., and Kobayashi, M. (1983). InMitochondria 1983. Nucleo-Mitochondrial Interactions, (eds.) Schweyen, R.J., Wolf, K., and Kaudewitz, F., (Walter de Gruyter, New York), pp. 371–387.Google Scholar
  32. 32.
    Noller, H.F. (1984).Annu. Rev. Biochem. 53:119–162.PubMedGoogle Scholar
  33. 33.
    Moore, P.B. (1987).Cold Spring Harbor Symp. Quant. Biol. 52:721–730.PubMedGoogle Scholar
  34. 34.
    Vester, B., and Garrett, R.A. (1988).EMBO J. 7:3577–3587.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Neil Howell
    • 1
  • Alice Lee
    • 1
  1. 1.Division of Research, Department of Radiation TherapyThe University of Texas Medical BranchGalveston

Personalised recommendations