Advertisement

Somatic Cell and Molecular Genetics

, Volume 15, Issue 3, pp 215–227 | Cite as

Gene expression in implanted rat hepatocytes following retroviral-mediated gene transfer

  • Kathryn D. Anderson
  • John A. Thompson
  • Judith M. DiPietro
  • Kate T. Montgomery
  • Lola M. Reid
  • W. French Anderson
Article

Abstract

An hepatocyte transplantation-gene transfer protocol has been developed whereby liver cells containing an expressing NeoRgene can be successfully implanted in vivo. Adult primary cultures of rat hepatocytes, after infection with the retroviral vector N2, were grown on a floating solid support (coated with purified collagen IV) in a serum-free hormonally defined medium designed for hepatocytes that also contained G418. Under these conditions, normal adult hepatocytes expressing the NeoRgene could be grown to high density. The solid supports holding the gene-engineered hepatocytes were then implanted into adult rats into subcutaneous and intraperitoneal sites. After one to two weeks, the supports were removed and shown to still contain the gene-engineered hepatocytes expressing the NeoRgene. These results suggest that cells from solid organs, such as the liver, are potential targets for gene transfer and expression studies in vivo.

Keywords

Collagen Gene Expression Liver Cell Gene Transfer Primary Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Anderson, W.F. (1984).Science 226:401–409.PubMedGoogle Scholar
  2. 2.
    Ledley, F.D., Darlington, G.J., Hahn, T., and Woo, S.L.C. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:5335–5339.PubMedGoogle Scholar
  3. 3.
    Wilson, J.M., Jefferson, D.M., Chowdhury, J.R., Novikoff, P.M., Johnston, D.E., and Mulligan, R.C. (1988).Proc. Natl. Acad. Sci. U.S.A. 85:3014–3018.PubMedGoogle Scholar
  4. 4.
    Wolff, J.A., Yee, J.-K., Skelly, H.F., Moores, J.C., Respess, J.G., Friedmann, T., and Leffert, H. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:3344–3348.PubMedGoogle Scholar
  5. 5.
    Wolff, J.A., Yee, J.-K., Skelly, H., Moores, J., Respess, J., Friedmann, T., and Leffert, H. (1987)Somat. Cell Mol. Genet. 13:423–428.PubMedGoogle Scholar
  6. 6.
    Wilson, J.M., Johnston, D.E., Jefferson, D.M., and Mulligan, R.C. (1988).Proc. Natl. Acad. Sci. U.S.A. 85:4421–4425.PubMedGoogle Scholar
  7. 7.
    Demetriou, A.A., Levenson, S.M., Novikoff, P.M., Novikoff, A.B., Chowdhury, N.R., Whiting, J., Reisner, A., and Chowdhury, J.R. (1986).Proc. Natl. Acad. Sci. U.S.A. 83:7475–7479.PubMedGoogle Scholar
  8. 8.
    Demetriou, A.A., Whiting, J.F., Feldman, D., Levenson, S.M., Chowdhury, N.R., Moscioni, A.D., Kram, M., and Chowdhury, J.R. (1986).Science 233:1190–1192.PubMedGoogle Scholar
  9. 9.
    Demetriou, A.A., Whiting, J., Levenson, S.M., Chowdhury, N.R., Schechner, R., Michalski, S., Feldman, D., and Chowdhury, J.R. (1986).Ann. Surg. 204:259–271.PubMedGoogle Scholar
  10. 10.
    Higgins, G.M., and Anderson, R.M. (1931).Arch. Pathol. 12:186–202.Google Scholar
  11. 11.
    Berry, M.N., and Friend, D.S. (1969).J. Cell Biol. 43:506–520.PubMedGoogle Scholar
  12. 12.
    Enat, R., Jefferson, D.M., Ruiz-Opazo, N., Gatmaitan, Z., Leinwand, L., and Reid, L.M. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:1411–1415.PubMedGoogle Scholar
  13. 13.
    Reid, L.M., Abreu, S.L., and Montgomery, K. (1988). InThe Liver: Biology and Pathobiology, (eds.) Arias, I.M., Jakoby, W.B., Poppu, H., Schachter, D., and Shafritz, D.A. (Raven Press, New York), pp. 717–737.Google Scholar
  14. 14.
    Kleinman, H.K., McGarvey, M.L., Liotta, L.A., Robey, P.G., Tryggvason, K., and Martin, G.R. (1982).Biochemistry 21:6188–6193.PubMedGoogle Scholar
  15. 15.
    Michalopoulos, G., Sattler, G.L., and Pitot, H.D. (1976).Life Sci. 18:1139–1144.PubMedGoogle Scholar
  16. 16.
    Sawada, N., Tomomura, A., Satler, C.A., Satler, G.L., Kleinman, H.K., and Pitot, H.C. (1986).Exp. Cell Res. 167:458–470.PubMedGoogle Scholar
  17. 17.
    Sirica, A.E., Richards, W., Tsukada, Y., Sattler, C.A., and Pitot, H.C. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:283–287.PubMedGoogle Scholar
  18. 18.
    Schaeffer, W.I. (1980).Ann. N.Y. Acad. Sci. 349:165–182.PubMedGoogle Scholar
  19. 19.
    Deschatrette, M., and Weiss, M.C. (1974).Biochimie 56:1603–1611.PubMedGoogle Scholar
  20. 20.
    Michalopoulos, G., Cianciulli, H.D., Novotny, A.R., Kligerman, A.D., Strom, S.C., and Jirtle, R.L. (1982).Cancer Res. 42:4673–4682.PubMedGoogle Scholar
  21. 21.
    Southern, E. (1975).J. Mol. Biol. 98:503–517.PubMedGoogle Scholar
  22. 22.
    Michitsch, R.W., Montgomery, K.T., and Melera, P.W. (1984).Mol. Cell Biol. 4:2370–2380.PubMedGoogle Scholar
  23. 23.
    Thomas, P.S. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:5201–5205.PubMedGoogle Scholar
  24. 24.
    Zern, M.A., Chakraborty, R., Ruiz-Opazo, N., Yap, S.H., and Shafritz, D.A. (1983).Hepatology 3:317–322.PubMedGoogle Scholar
  25. 25.
    Huggenvik, J.L., Idzerda, R.L., Haywood, L., Lee, D.C., McKnight, G.S., and Griswold, M.D. (1987).Endocrinology 120:332–340.PubMedGoogle Scholar
  26. 26.
    Derman, E., Krauter, K., Walling, L., Weinberger, C., Ray, M., and Darnell, J.E., Jr. (1981).Cell 23:731–739.PubMedGoogle Scholar
  27. 27.
    Lemischka, I.R., Farmer, S., Racaniello, V.R., and Sharp, P.A. (1981).J. Mol. Biol. 151:101–120.PubMedGoogle Scholar
  28. 28.
    Feinberg, A.P., and Vogelstein, B. (1984).Anal. Biochem. 137:266–267.PubMedGoogle Scholar
  29. 29.
    Eglitis, M.A., Kantoff, P., Gilboa, E., and Anderson, W.F. (1985).Science 230:1395–1398.PubMedGoogle Scholar
  30. 30.
    Reiss, B., Sprengel, R., Will, H., and Schaller, H. (1984).Gene 30:211–226.PubMedGoogle Scholar
  31. 31.
    Southern, P.J., and Berg, P. (1982).J. Molec. Appl. Genet. 1:327–341.Google Scholar
  32. 32.
    Armentano, D., Yu, S.-F., Kantoff, P.W., von Ruden, T., Anderson, W.F., and Gilboa, E. (1987).J. Virol. 61:1647–1650.PubMedGoogle Scholar
  33. 33.
    Keller, G., Paige, C., Gilboa, E., and Wagner, E.S. (1985).Nature 318:149–154.PubMedGoogle Scholar
  34. 34.
    Miller, A.D., and Buttimore, C. (1986).Mol. Cell Biol. 6:2895–2902.PubMedGoogle Scholar
  35. 35.
    Wigler, M., Silverstein, S., Lee, L., Pellicer, A., Chen, V., and Axel, R. (1977).Cell 11:223–232.PubMedGoogle Scholar
  36. 36.
    Jefferson, D.M., Clayton, D.F., Darnell, J.E., and Reid, L.M. (1984).Mol. Cell Biol. 4:1929–1934.PubMedGoogle Scholar
  37. 37.
    Thompson, J.A., Anderson, K.D., DiPietro, J.D., Zwiebel, J.A., Zametta, M., Anderson, W.F., and Maciag, T. (1988).Science 241:1349–1352.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Kathryn D. Anderson
    • 1
    • 2
  • John A. Thompson
    • 1
  • Judith M. DiPietro
    • 1
  • Kate T. Montgomery
    • 3
  • Lola M. Reid
    • 3
    • 4
  • W. French Anderson
    • 1
  1. 1.Laboratory of Molecular Hematology, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesda
  2. 2.Department of SurgeryChildren's Hospital National Medical CenterWashington, D.C.
  3. 3.Departments of Molecular PharmacologyAlbert Einstein College of MedicineBronx
  4. 4.Microbiology and ImmunologyAlbert Einstein College of MedicineBronx

Personalised recommendations