Skip to main content
Log in

Two cytoplasmically inherited oligomycin-resistant Chinese hamster cell lines exhibit an altered mitochondrial translation product

  • Brief Communication
  • Published:
Somatic Cell and Molecular Genetics

Abstract

Mitochondria from two different cytoplasmically inherited oligomycin-resistant Chinese hamster ovary cell lines synthesize an altered polypeptide compared to mitochondria from wild-type cells. For example, mitochondria from both oligomycin-resistant cell lines synthesize a polypeptide with a molecular weight of approximately 20,500, which is present in very low amounts in wild-type cells. In contrast, mitochondria from wild-type cells synthesize a polypeptide with a molecular weight of approximately 19,500, which is present in very low amounts in one of the oligomycin-resistant mutants and in reduced amounts in the other mutant. The gene which encodes this altered polypeptide is cytoplasmically transferred together with the oligomycin-resistant phenotype. This is the first example in mammalian cells where an altered mitochondrial gene product is shown to be associated with the cytoplasmic transfer of oligomycin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. Tzagoloff, A. (1976). InThe Enzymes of Biological Membranes, (Plenum Press, New York), pp. 103–124.

    Google Scholar 

  2. Criddle, R.S., Johnston, R.F., and Stack, R.J. (1979).Curr. Top. Bioenerget. 9:89–145.

    Google Scholar 

  3. Futai, M., and Kanazawa, H. (1983).Microbiol. Rev. 47:285–312.

    PubMed  Google Scholar 

  4. Amzel, L.M., and Pedersen, P.L. (1983).Annu. Rev. Biochem. 52:801–824.

    PubMed  Google Scholar 

  5. Linnett, P.E., and Beechey, R.B. (1979).Methods Enzymol. 55:472–519.

    PubMed  Google Scholar 

  6. Saunders, G.W., and Rank, G.H. (1979).Mol. Gen. Genet. 175:45–52.

    PubMed  Google Scholar 

  7. Sebald, W., Wachter, E., and Tzagoloff, A. (1979).Eur. J. Biochem. 100:599–607.

    PubMed  Google Scholar 

  8. Macino, G., and Tzagoloff, A., (1979).J. Biol. Chem. 254:4617–4623.

    PubMed  Google Scholar 

  9. Macino, G., and Tzagoloff, A., (1980).Cell 20:507–517.

    PubMed  Google Scholar 

  10. Novitski, C.E., Macreadie, I.G., Maxwell, R.J., Lukins, H.G., Linnane, A.W., and Nagley, P. (1984).Curr. Genet. 8:135–146.

    Google Scholar 

  11. Tzagoloff, A., Macino, G., and Sebald, W. (1979).Annu. Rev. Biochem. 48:419–441.

    PubMed  Google Scholar 

  12. Anderson, S., Bankier, A.T., Barrell, B.C., de Bruijn, M.H.L., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J.H., Staden, R., and Young, I.G. (1981).Nature 290:457–465.

    PubMed  Google Scholar 

  13. Breen, G.A.M., and Scheffler, I.E. (1980).J. Cell Biol. 86:723–729.

    PubMed  Google Scholar 

  14. Breen, G.A.M. (1982).Mol. Cell. Biol. 2:772–781.

    PubMed  Google Scholar 

  15. Simmons, W.A., and Breen, G.A.M. (1983).Somat. Cell Genet. 9:549–566.

    PubMed  Google Scholar 

  16. Lagarde, A.E., and Siminovitch, L. (1979).Somat. Cell Genet. 5:847–871.

    PubMed  Google Scholar 

  17. Howell, N. (1983).Somat. Cell Genet. 9:1–24.

    PubMed  Google Scholar 

  18. Lichtor, T., and Getz, G.S. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:324–328.

    PubMed  Google Scholar 

  19. Kuhns, M.C., and Eisenstadt, J.M. (1981).Somat. Cell Genet. 7:737–750.

    PubMed  Google Scholar 

  20. Webster, K.A., Oliver, N.A., and Wallace, D.C. (1982).Somat. Cell Genet. 8:223–244.

    PubMed  Google Scholar 

  21. Slott, E.F., Jr., Shade, R.O., and Lansman, R.A. (1983).Mol. Cell. Biol. 3:1694–1702.

    PubMed  Google Scholar 

  22. Ditta, G., Soderberg, K., and Scheffler, I.E. (1977).Nature 268:64–67.

    PubMed  Google Scholar 

  23. Douglas, M., Finkelstein, D., and Butow, R.A. (1979).Methods Enzymol. 56:58–65.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shew, J.Y., Breen, G.A.M. Two cytoplasmically inherited oligomycin-resistant Chinese hamster cell lines exhibit an altered mitochondrial translation product. Somat Cell Mol Genet 11, 103–108 (1985). https://doi.org/10.1007/BF01534741

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534741

Keywords

Navigation