Skip to main content
Log in

Single-step selection of mammalian cell mutants deficient in CTP synthetase

  • Brief Communication
  • Published:
Somatic Cell and Molecular Genetics

Abstract

A single-step selection of Chinese hamster V79 cells deficient in CTP synthetase (CTPS )is presented. The underlying principle of the direct selection is the differential and efficient killing of synchronized wild-type cells through incorporation of [3H]uridine and [3 H]thymidine. The CTPS mutant cells were recovered by virtue of their not engaging in DNA synthesis, because (1) CTPS cells are deficient in CTP synthetase and thus are unable to convert [3 H]UTP into [3 H]CTP, which eventually is converted into [3 H]dCTP and incorporated into DNA; (2) the growth of CTPS mutant cells was arrested as a result of cytidine deprivation, thus escaping the killing by the incorporation of [3 H]thymidine. The isolated mutant clones are auxotrophic for cytidine and are stable in phenotype with a reversion frequency of less than 1 × 10 −7.The mutant cells have no or very low CTP synthetase activity when tested by in vitro CTP synthetase assay or by whole-cell [3 H]uridine labeling assay. This modified “tritium suicide” method combined with the S-phase cell synchronization could provide a powerful means for the recovery from the cell population of nondividing mutant cells that are auxotrophic for some special nutrient requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. Wright, J.A. (1983).Pharmacol. Ther. 22:81–102.

    PubMed  Google Scholar 

  2. Chu, E.H.Y., McLaren, J.D., Li, I.C., and Lamb, B. (1984).Biochem. Genet. 22:701–715.

    PubMed  Google Scholar 

  3. McLaren, J.D., and Chu, E.H.Y. (1984).Biochem. Genet. 22:717–727.

    PubMed  Google Scholar 

  4. de Saint Vincent, B.R., and Buttin, G. (1980).Biochim. Biophys. Acta 610:352–359.

    Google Scholar 

  5. Trudel, M., Van Genechten, T., and Meuth, M. (1984).J. Biol. Chem. 259:2355–2559.

    PubMed  Google Scholar 

  6. Kaufman, E.R. (1984).Cancer Res. 4:3371–3376.

    Google Scholar 

  7. Arrow, B., Watts, T., Lassetter, J., Washtien, W., and Ullman, B. (1984).J. Biol. Chem. 259:9035–9043.

    PubMed  Google Scholar 

  8. Meuth, M., L'-Heureux-Huard, N., and Trudel, M. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:6505–6509.

    PubMed  Google Scholar 

  9. Kelshall, A., and Meuth, M. (1988).Somat. Cell Mol. Genet. 14:149–154.

    PubMed  Google Scholar 

  10. Weinberg, G., Ullman, B., and Martin, D.W., Jr. (1981).Proc. Natl. Acad. Sci. U.S.A. 78:2447–2451.

    PubMed  Google Scholar 

  11. McLaren, J.D., and Chu, E.H.Y. (1983).Mol. Cell. Biochem. 57:167–175.

    PubMed  Google Scholar 

  12. Swyryd, E.A., Seaver, S.S., and Stark, G.R. (1974).J. Biol. Chem. 249:6945–6950.

    PubMed  Google Scholar 

  13. Wawra, E., and Wintersberger, E. (1983).Mol. Cell Biol. 3:297–304.

    PubMed  Google Scholar 

  14. Urlaub, G., and Chasin, L.A. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:4216–4220.

    PubMed  Google Scholar 

  15. Ayusawa, D., Koyama, H., Iwata, K., and Seno, T. (1980).Somat. Cell Mol. Genet. 6:261–270.

    Google Scholar 

  16. Chasin, L.A. (1974).Cell 2:37–41.

    PubMed  Google Scholar 

  17. Siminovitch, L. (1967).Cell 7:1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, IC., Wu, CL. & Chu, E.H.Y. Single-step selection of mammalian cell mutants deficient in CTP synthetase. Somat Cell Mol Genet 15, 85–91 (1989). https://doi.org/10.1007/BF01534673

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534673

Keywords

Navigation