Skip to main content
Log in

Mutant Chinese hamster ovary cells with defective methotrexate uptake are distinguishable by reversion analysis

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Chinese hamster ovary cells that are about 50× more resistant to the cytotoxic action of methotrexate than wild-type cells were deficient in the ability to take up methotrexate. In the absence of any exogeneous folates, these cells require 100–250× the level of folinic acid as wild-type cells to support growth at a similar level. Two classes of mutants were distinguishable by their revertability for growth on folinic acid. Revenants derived from one class were similar to wild-type cells in both their ability to grow in medium containing low levels of folinic acid and in their sensitivity to methotrexate. In contrast, partial revertants from a second class were able to grow in medium containing low or no folinic acid, but retained their methotrexate resistance. Furthermore, mutants of the first class were unable to take up folic acid while the second class of mutants accumulated folic acid to levels similar to that of wild-type cells. Somatic cell hybrids formed between these two classes of mutants were noncomplementing. These observations suggested that some, but not all, components may be shared between the transport systems mediating methotrexate and folic acid uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Blakley, R.L. (1969). InThe Biochemistry of Folic Acid and Related Pteridines, (North-Holland, Amsterdam), pp. 139–187.

    Google Scholar 

  2. Goldman, I.D., Lichtenstein, N.S., and Oliverio, V.T. (1968).J. Biol. Chem. 244:5007–5017.

    Google Scholar 

  3. Goldman, I.D. (1969).J. Biol. Chem. 244:3779–3785.

    PubMed  Google Scholar 

  4. Heunnekens, F.M., Vitols, K.S., and Henderson, G.B. (1978).Adv. Enzymol. 47:313–346.

    PubMed  Google Scholar 

  5. Warren, R., Nichols, A.P., and Bender, R.A. (1978).Cancer Res. 38:668–671.

    PubMed  Google Scholar 

  6. Henderson, G.B., and Zevely, E.M. (1983).Arch. Biochem. Biophys. 221:438–446.

    PubMed  Google Scholar 

  7. Henderson, G.B., Suresh, M.R., Vitols, K.S., and Huennekens, F.M. (1986).Cancer Res. 46:1639–1643.

    PubMed  Google Scholar 

  8. Henderson, G.B., Tsuji, J.M., and Kumar, H.P. (1987).Biochem. Pharmacol. 36:3007–3014.

    PubMed  Google Scholar 

  9. Sirotnak, F.M. (1985).Cancer Res. 45:3992–4000.

    PubMed  Google Scholar 

  10. Kano, Y., Ohnuma, T., and Holland, J.F. (1986).Blood 68:586–591.

    PubMed  Google Scholar 

  11. Sirotnak, F.M., Goutas, L.J., and Mines, L.S. (1985).Cancer Res. 45:4732–4734.

    PubMed  Google Scholar 

  12. Sirotnak, F.M., Goutas, L.J., Jacobsen, D.M., Mines, L.S., Barrueco, J.R., Gaumont, Y. and Kisliuk, R.L. (1987).Biochem. Pharmacol. 36:1659–1667.

    PubMed  Google Scholar 

  13. Flintoff, W.F., Davidson, S.V., and Siminovitch, L. (1976).Somat. Cell Genet. 2:245–261.

    PubMed  Google Scholar 

  14. Flintoff, W.F., and Saya, L. (1978).Somat. Cell Genet. 4:143–156.

    PubMed  Google Scholar 

  15. Flintoff, W.F., and Nagainis, C.R. (1983).Arch. Biochem. Biophys. 223:433–440.

    PubMed  Google Scholar 

  16. Flintoff, W.F., Spindler, S.M., and Siminovitch, L. (1976).In Vitro 12:749–757.

    PubMed  Google Scholar 

  17. Bradford, M. (1976).Anal. Biochem. 72:248–254.

    PubMed  Google Scholar 

  18. Chaney, W.G., Howard, D.R., Pollard, J.W., Sallustio, S., and Stanley, P. (1986).Somat. Cell Mol. Genet. 12:237–244.

    PubMed  Google Scholar 

  19. Flintoff, W.F. (1984).Virology 134:450–459.

    PubMed  Google Scholar 

  20. Kamen, B.A., and Capdevila, A. (1986).Proc. Natl. Acad. Sci. U.S.A. 83:5983–5987.

    PubMed  Google Scholar 

  21. Regan, C.L., and Fuller, M.T. (1988).Genes Dev. 2:82–92.

    PubMed  Google Scholar 

  22. Sirotnak, F.M., Moccio, D.M., and Yang, C. (1984).J. Biol. Chem. 259:13139–13144.

    PubMed  Google Scholar 

  23. Yang, C.H., Dembo, M., and Sirotnak, F.M. (1983).J. Membr. Biol. 75:11–20.

    PubMed  Google Scholar 

  24. Antony, A.C., Kane, M.A., Portillo, R.M., Elwood, P.C., and Kolhouse, J.F. (1985).J. Biol. Chem. 260:14911–14917.

    PubMed  Google Scholar 

  25. Henderson, G.B., Tsuji, J.M., and Kumar, H.P. (1986).Cancer Res. 46:1633–1638.

    PubMed  Google Scholar 

  26. Sadasivan, E., da Costa, M., Rothenberg, S.P., and Brink, L. (1987).Biochim. Biophys. Acta 925:36–47.

    PubMed  Google Scholar 

  27. da Costa, M., and Rothenberg, S.P. (1988).Biochim. Biophys. Acta 939:533–541.

    PubMed  Google Scholar 

  28. McCormick, J.I., Susten, S.S., Rader, J.L., and Freisheim, J.H. (1979).Eur. J. Cancer 15:1377–1386.

    PubMed  Google Scholar 

  29. Henderson, G.B., and Zevely, E.M. (1984).J. Biol. Chem. 259:4558–4562.

    PubMed  Google Scholar 

  30. Henderson, G.B., and Montague-Wilkie, B. (1983).Biochim. Biophys. Acta 735:123–130.

    PubMed  Google Scholar 

  31. Kane, M.A., Portillo, R.M., Elwood, P.C., Antony, A.C., and Kolhouse, J.F. (1986).J. Biol. Chem. 261:44–49.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Underhill, T.M., Flintoff, W.F. Mutant Chinese hamster ovary cells with defective methotrexate uptake are distinguishable by reversion analysis. Somat Cell Mol Genet 15, 49–59 (1989). https://doi.org/10.1007/BF01534669

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534669

Keywords

Navigation