Skip to main content
Log in

Two types of mouse FM3A cell mutants deficient in 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and their transformants isolated by human chromosome-mediated gene transfer

  • Published:
Somatic Cell and Molecular Genetics

Abstract

We isolated three adenine auxotrophic mutants (Adel, Ade2 and Ade3) of mouse FM3A cells deficient in 5-aminoimidazole-4-carboxamide ribotide transformylase (EC 2.1.2.3) activity. Adel and Ade3 but not Adel also lacked inosinicase (EC 3.5.4.10) activity. While Ade2 and Ade3 complemented each other, Adel complemented neither Ade2 nor Ade3, suggesting that two complementation groups exist in these mutants. We introduced human genes into the Ade2 and Ade3 cells by chromosome-mediated gene transfer. All the transformants tested were found to produce the human transformylase and inosinicase, and identical DNA bands containing human Alu sequences were detected in the transformants of Ade2 and Ade3. These mutants seem to have arisen by mutation in the same gene or adjacent genes, since only human chromosome 2 was capable of rescuing the genetic defects in all these mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Feldman, R.I., and Taylor, M.W. (1974).Biochem. Genet. 12:393–405.

    PubMed  Google Scholar 

  2. Patterson, D. (1975).Somat. Cell Genet. 1:91–110.

    PubMed  Google Scholar 

  3. Patterson, D., Graw, S., and Jones, C. (1981).Proc. Natl. Acad. Sci. U.S.A. 78:405–409.

    PubMed  Google Scholar 

  4. Allegra, C.J., Hoang, K., Yeh, G.C., Drake, J.C., and Baram, J. (1987).J. Biol. Chem. 262:13520–13526.

    PubMed  Google Scholar 

  5. Ayusawa, D., Shimizu, K., Koyama, H., Takeishi, K., and Seno, T. (1983).J. Biol. Chem. 258:48–53.

    PubMed  Google Scholar 

  6. Ayusawa, D., Koyama, H., Iwata, K., and Seno, T. (1981).Somat. Cell Genet. 2:523–534.

    Google Scholar 

  7. Koyama, H. (1981).Tissue Culture 7:395–400.

    Google Scholar 

  8. Black, S.L., Black, M.J., and Mangum, J.H. (1978).Anal. Biochem. 90:397–401.

    PubMed  Google Scholar 

  9. Rabinowitz, J.C. (1963).Methods Enzymol. 6:814–815.

    Google Scholar 

  10. Flaks, J.G., and Lukens, L.N. (1963).Methods Enzymol. 6:52–99.

    Google Scholar 

  11. Lukens, L., and Flaks, J. (1963).Methods Enzymol. 6:670–702.

    Google Scholar 

  12. Lewis, W.H., Srinivasan, P.R., Stokoe, N., and Siminovitch, L. (1980).Somat. Cell Genet. 6:333–347.

    PubMed  Google Scholar 

  13. Ayusawa, D., Iwata, K., Seno, T., and Koyama, H. (1981).J. Biol. Chem. 256:12005–12012.

    PubMed  Google Scholar 

  14. Irwin, M., Oates, D.C., and Patterson, D. (1979).Somat. Cell Genet. 5:203–216.

    PubMed  Google Scholar 

  15. Mueller, W.T., and Benkovic, S.J. (1981).Biochemistry 20:337–344.

    PubMed  Google Scholar 

  16. Jones, C., Morse, H.G., and Patterson, D. (1987).Am. J. Hum. Genet. 39 (Suppl.):A158 (468).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamauchi, M., Ayusawa, D., Shimizu, K. et al. Two types of mouse FM3A cell mutants deficient in 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and their transformants isolated by human chromosome-mediated gene transfer. Somat Cell Mol Genet 15, 39–48 (1989). https://doi.org/10.1007/BF01534668

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534668

Keywords

Navigation