Skip to main content
Log in

Hypomethylation andADA gene expression in mouse CAK cells

  • Published:
Somatic Cell and Molecular Genetics

Abstract

The adenosine deaminase (ADA)locus appears to be under complex transcriptional control since levels of ADA enzyme activity vary greatly between different tissues and stages of development. Evidence that a trans-acting factor may be involved with the regulation of this locus came from previous experiments where fusion of ADA-negative human JEG cells and mouse ADA-positive cells led to the trans-activation of human ADAin a hybrid nucleus. Here, we demonstrate that the near euploid mouse embryo fibroblast cell line, CAK, also lacks detectable ADA enzyme activity due to altered gene regulation. We further demonstrate that ADAin CAK cells is not amenable to activation by somatic cell fusion. Following treatment with 5-azacytidine and Xyl-A selection (for ADA),however, CAK clones were obtained that stably express the ADAgene. Molecular analysis of the parental CAK cells and the ADA-positive derivative clones demonstrated that both 5′ and 3′ regions of the ADAgene had become hypomethylated in the ADAM + clones. We conclude that methylation is another element involved with the transcriptional control of the ADAgene and that ADAmight serve as a useful model for studying the interaction of cis-and trans-acting regulational elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Gluzman, Y. (1985). Eukaryotic Transcription, (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

    Google Scholar 

  2. Khoury, G., and Gruss, P. (1983).Cell 33:313–314.

    PubMed  Google Scholar 

  3. Razin, A., and Cedar, H. (1984).Int. Rev. Cytol. 92:159–185.

    PubMed  Google Scholar 

  4. Bird, A. (1986).Nature 321:209–213.

    PubMed  Google Scholar 

  5. Harris, M. (1982).Cell 29:483–492.

    PubMed  Google Scholar 

  6. Harris, M. (1984).Somat. Cell Mol. Genet. 10:275–281.

    PubMed  Google Scholar 

  7. Mohandas, T., Sparks, R.S., and Shapiro, L.J. (1981).Science 211:393–396.

    PubMed  Google Scholar 

  8. Compese, S.J., and Palmiter, R.D. (1981).Cell 25:233–240.

    PubMed  Google Scholar 

  9. Stallings, R.L., Crawford, B.D., Tobey, R.A., Tesmer, J., and Hildebrand, C.E. (1986).Somat. Cell Mol. Genet. 12:423–432.

    PubMed  Google Scholar 

  10. Davidson, R., Ephrussi, B., Yamamoto, K. (1986).Proc. Natl. Acad. Sci. U.S.A. 56:1437–1440.

    Google Scholar 

  11. Brenda, P., and Davidson, R. (1971).J. Cell Physiol. 78:209–216.

    PubMed  Google Scholar 

  12. Darlington, G.J., Rankin, J.K., and Schlanger, G. (1982).Somat. Cell Genet. 8:403–412.

    PubMed  Google Scholar 

  13. Killary, A.M., and Fournier, R.E.K. (1984).Cell 38:523–534.

    PubMed  Google Scholar 

  14. Scholer, H.R., and Gruss, P. (1984).Cell 36:403–411.

    PubMed  Google Scholar 

  15. Seguin, C., Felber, B.K., Carter, A.P., and Homer, D.H. (1984).Nature 312:781–785.

    PubMed  Google Scholar 

  16. Wu, C. (1985).Nature 317:84–87.

    PubMed  Google Scholar 

  17. Siciliano, M.J., Bordeion, M.R., and Kohler, D.O. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:936–940.

    PubMed  Google Scholar 

  18. Adams, A., and Harkness, R.A. (1976).Clin. Exp. Immunol. 26:647–649.

    PubMed  Google Scholar 

  19. Edwards, Y.H., Hopkinson, D.A., and Harris, H. (1971).Ann. Hum. Genet. 35:207–219.

    PubMed  Google Scholar 

  20. Van der Weyden, M.B., and Kelley, W.N. (1976).J. Biol. Chem. 251:5448–5456.

    PubMed  Google Scholar 

  21. Sim, M.K., and Maguire, M.H. (1970).Biol. Reprod. 2:291–298.

    PubMed  Google Scholar 

  22. Farber, R.A., and Liskay, R.M. (1974).Cytogenet. Cell Genet. 13:384–396.

    PubMed  Google Scholar 

  23. Davidson, R.L., O'Malley, K.A., and Wheeler, T.B. (1976).Somat. Cell Genet. 2:271–280.

    PubMed  Google Scholar 

  24. Yeung, C.-Y., Riser, M.D., Kellems, R.E., and Siciliano, M.J. (1983).J. Biol. Chem. 258:8330–8337.

    PubMed  Google Scholar 

  25. Stallings, R.L., and Siciliano, M.J. (1985)Somatic Cell Genet. 7:295–306.

    Google Scholar 

  26. Stallings, R.L., and Siciliano, M.J. (1981).Somat. Cell Genet. 7:683–698.

    PubMed  Google Scholar 

  27. Siciliano, M.J., and White, B.F. (1987).Methods Enzymol. 151:169–194.

    PubMed  Google Scholar 

  28. Shows, T.B., and 24 others (1979).Cytogenet. Cell. Genet. 25:96–116.

    PubMed  Google Scholar 

  29. Blin, N., and Stafford, D.W. (1976).Nucleic Acids Res. 3:2303–2308.

    PubMed  Google Scholar 

  30. Southern, E.M. (1975).J. Mol. Biol. 98:503–517.

    PubMed  Google Scholar 

  31. Wahl, G.M., Stern, M., and Stork, L.R. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:3683–3687.

    PubMed  Google Scholar 

  32. Yeung, C.-Y., Ingolia, D.E., Roth, D.B., Shoemaker, C., Al-Ubaidi, M.R. Yen, J.Y., Ching, C., Bobonis, C. Kaufman, R.J., and Kellems, R.E. (1985).J. Biol. Chem. 260:10299–10307.

    PubMed  Google Scholar 

  33. Rigby, P.W., Dieckman, M., Rhodes, C., and Berg, P. (1977).J. Mol. Biol. 113:237–251.

    PubMed  Google Scholar 

  34. Feinberg, A.P., and Vogelstein, B. (1983).Anal. Biochem. 132:6–13.

    PubMed  Google Scholar 

  35. Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982).Molecular Cloning, (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

    Google Scholar 

  36. Frazier, M., Mars, W., Floring, D., Montagna, R., and Saunders, G. (1983).Mol. Cell. Biochem. 56:113–122.

    PubMed  Google Scholar 

  37. Avis, H., and Leder, P. (1972).Proc. Natl. Acad. Sci. U.S.A. 69:1408–1411.

    PubMed  Google Scholar 

  38. Rave, N., Crkvenjakov, R., and Boedtker, H. (1979).Nucleic Acids Res. 6:3559.

    PubMed  Google Scholar 

  39. Agarwal, R.P., and Parks, R.E. (1978).Methods Enzymol. 51:502–507.

    PubMed  Google Scholar 

  40. Bradford, M.M. (1976).Anal Biochem. 72:248–254.

    PubMed  Google Scholar 

  41. Stallings, R.L., Siciliano, M.J., Adair, G.M., and Humphrey, R.M. (1982).Somat. Cell Genet. 8:413–422.

    PubMed  Google Scholar 

  42. Siciliano, M.J., Fournier, R.E.K., and Stallings, R.L. (1984).J Hered. 75:175–180.

    PubMed  Google Scholar 

  43. Ingolia, D.E., Al-Ubaidi, M.R., Yeung, C.-Y., Bigo, H.A., Wright, D.A., and Kellems, R.E. (1986).Mol. Cell Biol 6:4458–4466.

    PubMed  Google Scholar 

  44. Busslinger, M., de Boer, E., Wright, S., Grosweld, F.G., and Flavell, R.A. (1983).Nucleic Acids Res. 11:3559–3586.

    PubMed  Google Scholar 

  45. van der Ploeg, L.H.T., and Flavell, R.A. (1980).Cell 19:947–958.

    PubMed  Google Scholar 

  46. DeVries, P.J., Davidson, R.L., and Clough, D.W. (1986).Somat. Cell Mol. Genet. 12:385–393.

    PubMed  Google Scholar 

  47. Shmookler Reis, R.J., and Goldstein, S. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:3949–3953.

    PubMed  Google Scholar 

  48. Giavazzi, E.R., Anderson, J.E., Cohen, F.C., Pollara, B., and Meuwissen, H.J. (1972).Lancet ii:1067–1069.

    Google Scholar 

  49. Minkowski, M.D., Castellazzi, M., and Buttin, G. (1984).J. Immun. 133:52–58.

    PubMed  Google Scholar 

  50. Orkin, S.H., Goff, S.C., Kelley, W.N., and Daldona, P.E. (1985).Mol. Cell. Biol. 5:762–767.

    PubMed  Google Scholar 

  51. Adrian, G.S., Wiginton, D.A., and Hutton, J.J. (1984).Mol. Cell Biol. 4:1712–1717.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stallings, R.L., Siciliano, M.J., Frazier, M.L. et al. Hypomethylation andADA gene expression in mouse CAK cells. Somat Cell Mol Genet 15, 1–11 (1989). https://doi.org/10.1007/BF01534664

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534664

Keywords

Navigation