Skip to main content
Log in

Factors influencing efficiency and reproducibility of polybrene-assisted gene transfer

  • Published:
Somatic Cell and Molecular Genetics

Abstract

A systematic investigation of factors influencing the efficiency of polybrene-assisted gene transfer for both transient and stable foreign gene expression was carried out utilizing NIH 3T3 fibroblasts as prototypic recipients for the plasmid expression vectors pSV2cat and pSV2neo. While transfection cocktail composition and cell density, in addition to polybrene exposure conditions and exogenous DNA concentration, each played an important role, the key determinant to achieving excellent transfection efficiency proved to be the DMSO treatment regimen. Under optimal conditions, the yield of colonies resistant to the neomycin analog, G418, increased linearly at the rate of 10 clones/ng of input (native form I pSV2neo) DNA up to a plasmid concentration of 50 ng, whereupon the dose-response for colony recovery became semilogarithmic. The incidence of stable transformants was doubled by linearization of the vector DNA, whereas the addition of carrier DNA to the transfection cocktail was without effect until present at concentrations above 10-fold molar excess, at which point the efficacy of gene transfer declined rapidly. Combined Southern and dot-blot analyses of transformed cell DNA demonstrated that the polybrene-DMSO procedure led to the stable integration of relatively few copies of the marker gene in each transformant; the actual number varied from 1–3 to 10–15 per host genome, depending on the concentration of pSV2neo DNA added. The potential for the adaptation of this DNA transfection procedure for general use with other mammalian cell types, as well as its technical strengths and weaknesses, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Pellicer, A., Robins, D., Wold, B., Sweet, R., Jackson, J., Lowry, I., Roberts, J.M., Sim, G.K., Silverstein, S., and Axel, R. (1980).Science 209:1414–1422.

    PubMed  Google Scholar 

  2. Weinberg, R.A. (1981).Biochim. Biophys. Acta 651:25–35.

    PubMed  Google Scholar 

  3. Debenham, P.G., Webb, M.B.T., Masson, W.K., and Cox, R. (1984).Int. J. Radiat. Biol. 45:525–536.

    Google Scholar 

  4. Yoakum, G.H., Korba, B.E., Lechner, J.F., Tokiwa, T., Gazdar, A.F., Seeley, T., Siegel, M., Leeman, L., Autrup, H., and Harris, C.C. (1983).Science 222:385–389.

    PubMed  Google Scholar 

  5. Protic-Sabljic, M., Whyte, D., Fagan, J., Howard, B.H., Gorman, C.M., Padmanabhan, R., and Kraemer, K.H. (1985).Mol. Cell. Biol. 5:1685–1693.

    PubMed  Google Scholar 

  6. Bollon, A.P., and Silverstein, S.J. (1982). InTechniques in Somatic Cell Genetics, (ed.) Shay, J.W. (Plenum Press, New York), pp. 415–428.

    Google Scholar 

  7. Graham, F.L., and van der Eb, A.J. (1973).Virology 52:456–467.

    PubMed  Google Scholar 

  8. Chen, C., and Okayama, H. (1987).Mol. Cell. Biol. 7:2745–2752.

    PubMed  Google Scholar 

  9. Wigler, M., Pellicer, A., Silverstein, S., Axel, R., Urlaub, G., and Chasin, L. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:1373–1376.

    PubMed  Google Scholar 

  10. McCutchan, J.H., and Pagano, J. (1968).J. Natl. Cancer Inst. 41:351–357.

    PubMed  Google Scholar 

  11. Sussman, D.J., and Milman, G. (1984).Mol. Cell. Biol. 4:1641–1643.

    PubMed  Google Scholar 

  12. Bond, C.V., and Wold, B. (1987).Mol. Cell. Biol. 7:2286–2293.

    PubMed  Google Scholar 

  13. Chaney, W.G., Howard, D.R., Pollard, J.W., Sallustio, S., and Stanley, P. (1986).Somat. Cell Mol. Genet. 12:237–244.

    PubMed  Google Scholar 

  14. Kawai, S., and Nishizawa, M. (1984).Mol. Cell. Biol. 4:1172–1174.

    PubMed  Google Scholar 

  15. Palmer, T.D., Hock, R.A., Osborne, W.R.A., and Miller, D. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:1055–1059.

    PubMed  Google Scholar 

  16. Capecchi, M.R. (1980).Cell 22:479–488.

    PubMed  Google Scholar 

  17. Yamaizumi, M., Horwich, A.L., and Ruddle, F.H. (1983).Mol. Cell. Biol. 3:511–522.

    PubMed  Google Scholar 

  18. Chu, G., Hayakawa, M., and Berg, P. (1987).Nucleic Acids Res. 15:1311–1326.

    PubMed  Google Scholar 

  19. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P.H. (1982).EMBO J. 1:841–845.

    PubMed  Google Scholar 

  20. Fraley, R., and Papahadjopoulos, D. (1982).Curr. Top. Microbiol. Immunol. 96:171–191.

    PubMed  Google Scholar 

  21. Rassoulzadegan, M., Binetruy, B., and Cuzin, F. (1982).Nature 295:257–259.

    PubMed  Google Scholar 

  22. Lewis, W. (1983).Exp. Cell Res. 143:309–318.

    PubMed  Google Scholar 

  23. Lewis, W.H., Srinivasan, P., Stokoe, N., and Siminovitch, L. (1980).Somat. Cell Genet. 6:333–347.

    PubMed  Google Scholar 

  24. Coelen, R.J., Jose, D.G., and May, J.T. (1983).Arch. Virol. 75:307–311.

    PubMed  Google Scholar 

  25. Notter, M.F.D., Leary, J.F., and Balduzzi, P.C. (1982).J. Virol. 41:958–964.

    PubMed  Google Scholar 

  26. Toyoshima, K., and Vogt, P.K. (1969).Virology 38:414–426.

    PubMed  Google Scholar 

  27. Pagano, J.S., McCutchan, J.H., and Vahari, A. (1967).J. Virol. 1:891–897.

    PubMed  Google Scholar 

  28. Tovell, D.R., and Colter, J.S. (1967).Virology 32:84–92.

    PubMed  Google Scholar 

  29. Lasfargues, E.Y., Vaidya, A.B., Lasfargues, J.C., and Moore, D.H. (1976).J. Natl. Cancer Inst. 57:447–449.

    PubMed  Google Scholar 

  30. Morgan, T.L., Maher, V.M., and McCormick, J.J. (1986).In Vitro Cell. Dev. Biol. 22:317–319.

    PubMed  Google Scholar 

  31. Aubin, R., Weinfeld, M., and Paterson, M.C. (1987).J. Cell. Biochem. Suppl. 11C:Abstract 207.

  32. Southern, P.J., and Berg, P. (1982).J. Mol. Appl. Genet. 1:327–341.

    PubMed  Google Scholar 

  33. Childs, J.D., and Birnboim, H.C. (1984).Plasmid 11:82–91.

    PubMed  Google Scholar 

  34. Gorman, C.M., Moffat, L.F., and Howard, B.H. (1982).Mol. Cell. Biol. 2:1044–1051.

    PubMed  Google Scholar 

  35. Birnboim, H.C. (1983).Methods Enzymol. 100:243–255.

    PubMed  Google Scholar 

  36. Zasloff, M., Ginder, G.D., and Felsenfeld, G. (1978).Nucleic Acids Res. 5:1139–1151.

    PubMed  Google Scholar 

  37. Gorman, C.M., and Howard, B.H. (1983).Nucleic Acids Res. 11:7631–7648.

    PubMed  Google Scholar 

  38. Davis, L.G., Dibner, M.D., and Battey, J.F. (1986). inBasic Methods in Molecular Biology, (ed.) Davis, L. G. (Elsevier Science Publishing, New York), pp. 44–46.

    Google Scholar 

  39. Southern, E.M. (1975).J. Mol. Biol. 98:503–517.

    PubMed  Google Scholar 

  40. Wahl, G.M., Stern, M., and Stark, G.R. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:3683–3688.

    PubMed  Google Scholar 

  41. Loyter, A., Scangos, G.A., and Ruddle, F.H. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:422–426.

    PubMed  Google Scholar 

  42. Gorman, C.M., Padmanabhan, R., and Howard, B.H. (1983).Science 221:551–553.

    PubMed  Google Scholar 

  43. Sutherland, B.M., and Bennett, P.V. (1984).Cancer Res. 44:2769–2772.

    PubMed  Google Scholar 

  44. Luthman, H., and Magnusson, G. (1983).Nucleic Acids Res. 11:1295–1308.

    PubMed  Google Scholar 

  45. Huttner, K.M., Barbosa, J.A., Scangos, G.A., Pratcheva, D.D., and Ruddle, F.H. (1981).J. Cell Biol. 91:153–156.

    PubMed  Google Scholar 

  46. Michaeli, T., and Prives, C. (1987).Nucleic Acids Res. 15:1591–1594.

    Google Scholar 

  47. Peterson, D.O., Beifuss, K.K., and Morley, K.L. (1987).Mol. Cell. Biol. 7:1563–1567.

    PubMed  Google Scholar 

  48. Kerbel, R.S., Waghorne, C., Man, M.S., Elliott, B., and Breitman, M.L. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:1263–1267.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubin, R.J., Weinfeld, M. & Paterson, M.C. Factors influencing efficiency and reproducibility of polybrene-assisted gene transfer. Somat Cell Mol Genet 14, 155–167 (1988). https://doi.org/10.1007/BF01534401

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534401

Keywords

Navigation