Skip to main content

Advertisement

Log in

Therapeutic effect of a vaccinia colon oncolysate prepared with interleukin-2-gene encoded vaccinia virus studied in a syngeneic CC-36 murine colon hepatic metastasis model

  • Ogininal Articles
  • Interleukin-2-encoded Vaccinia Virus, Oncolysate Immunotherapy
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Vaccinia CC-36 murine colon oncolysate (VCO) prepared with interleukin-2-gene encoded recombinant vaccinia virus (IL-2VCO) was used in the treatment of a syngeneic murine colon adenocarcinoma (CC-36) hepatic metastasis to test the beneficial effect of the interleukin-2-gene encoded vaccinia virus over a control recombinant vaccinia virus in producing a vaccinia oncolysate tumor cell vaccine. Results suggest that the IL-2VCO treatment significantly reduced the hepatic tumor burden in comparison with the controls that received either IL-2-gene-encoded recombinant vaccinia virus or a plain recombinant vaccinia virus or vaccinia oncolysate prepared with the plain recombinant virus. The survival of mice treated with IL-2VCO was also improved in comparison with mice treated with other preparations. The induction of a cytolytic T lymphocyte response was examined to elucidate the mechanism of the induction of antitumor responses in IL-2VCO-treated mice. Fresh peripheral blood lymphocytes (PBL) isolated from IL-2VCO-treated mice showed a higher cytolytic activity against CC-36 tumor cell target when compared to PBL from the mice of other treatment groups, suggesting that the IL-2VCO induced an antitumor cytolytic T lymphocyte response. These results suggest that a vaccinia oncolysate, prepared with recombinant vaccinia virus encoding an immunomodulating cytokine gene will enhance antitumor responses in the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindenmann J, Klein PA (1967) Viral oncolysis increased the immunogenicity of host cell antigen associated with influenza virus. J Exp Med 126:93

    PubMed  Google Scholar 

  2. Wallack MK, Steplewsky Z, Koprowsky H, Rosato E, Geprge J, Hullihan B, Johnson J (1977) A new approach in specific active immunotherapy. Cancer 39:560

    PubMed  Google Scholar 

  3. Iwaki H, Barnavon Y, Bash JA, Wallack MK (1989) Vacciniavirus infected C-C36 colon tumor lysates stimulate cellular responses in vitro and protect syngeneic Balb/c mice from tumor cell challenge. J Surg Oncol 40:9

    Google Scholar 

  4. Wallack MK (1982) Specific tumor immunity produced by the injection of vaccinia viral oncolysates. J Surg Res 32:11

    Google Scholar 

  5. Sivanandham M, Scoggin SD, Sperry R, Wallack MK (1991) Vaccinia-virus infected UV induced murine melanoma cell lysate treatment induces anti-tumor immune responses in syngeneic mice (abstract). Proceedings of the 75th Annual Meeting of FASEB, vol. 5, p. 8138

    Google Scholar 

  6. Schirrmacher V, Heicappell R (1987) Prevention of metastatic spread by post operative immunotherapy with virally modified autologous tumor cells. II. Establishement of specific systemic antitumor immunity. Clin Exp Metasases 5:147

    Google Scholar 

  7. Wallack MK (1980) Specific active immunotherapy with vaccinia oncolysate. In: Crispen (ed) Tumor progression. Elsevier, North Holland, pp. 277–287

    Google Scholar 

  8. Wallack MK, McNally KR, Leftheriotis, S, Seigler H, Balch C, Wanebo H, Bartolucci A, Bash JA (1986) A Southeastern Cancer Study Group phase I/II trial using vaccinia melanoma oncolysate. Cancer 57:649

    PubMed  Google Scholar 

  9. Hersey P, Edwards A, Coates A, Shaw H, McCarthy Wh, Milton GW (1987) Evidence with treatment with vaccinia melanoma cell lysate (VMCL) may improve survival of patients with stage II melanoma patients. Cancer Immunol Immunother 25:257

    PubMed  Google Scholar 

  10. Cassel WA, Murray DR, Phillips HS (1983) A phase II study on post surgical management of stage II malignant melanoma with a Newcastle disease virus oncolysate. Cancer 52:856

    PubMed  Google Scholar 

  11. Sinkovics JG, Papadopoulos NE, Plager G (1981) Viral oncolysate in immunotherapy of human tumors. In: Yohn DS, Blakeslee JR (eds) Advances in comparative leukemia research in leukemia and related disease. Elsevier, New York, p 613

    Google Scholar 

  12. Wallack MK, Bash JA, Leftheriotis E, Seigler H, Bland K, Wanebo H, Balch C, Bartolucci AA (1987) Positive relationship of clinical and serological responses to vaccinia melanoma oncolysate. Arch Surg 122:1460

    PubMed  Google Scholar 

  13. Wallack MK, Michaelides M (1984) Serological response to human melanoma cell lines from patients with melanoma undergoing treatment with melanoma oncolysates. Surgery 96:791

    PubMed  Google Scholar 

  14. Seigler HF, Wallack MK, Vervacrt CE, Bash J, Roberson KM, Stuhlmiller GM, (1989) Melanoma patient antibody responses to melanoma tumor-associated antigens defined by murine monoclonal antibodies. J Biol Response Mod 8:37

    PubMed  Google Scholar 

  15. Wallack MK, Sivanandham M (1993) Clinical trials of VMO for melanoma. Ann NY Acad Sci 690:178

    PubMed  Google Scholar 

  16. Mukherji BJ, Chakravorthy NG, Sivanandham M (1990) T cell clones that react with autologous human tumors. Immunol Rev 116:33

    PubMed  Google Scholar 

  17. Anichini A, Fossati G, Parmiani G (1987) Clonal analysis of the cytolytic T-cell response to human tumors. Immunol Today 12: 385

    Google Scholar 

  18. Fugiwara H, Hamaoka T (1988) Cellular mechanisms of tumor rejection in vivo and enhanced induction of antitumor protective immunity applicable to tumor specific immunotherapy. Prog Exp Tumor Res 32:69

    PubMed  Google Scholar 

  19. Townsend SE, Allison JP (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259:368

    PubMed  Google Scholar 

  20. De Plaen E, Lurquin C, Van Pel A, Mariame B, Szikora JP, Wolfel T, Sibille C, Shomez P, Boon T (1988) Immunogenic (tum) variants of mouse tumor P815: cloning of the gene of tum antigen p91A and identification of the tum mutation. Proc Natl Acad Sci USA 85:2274

    PubMed  Google Scholar 

  21. Srivastava PK, Old LJ (1989) Identification of a human homologue of the mouse tumor rejection antigen GP93. Cancer Res 49:1341

    PubMed  Google Scholar 

  22. Van Den Eynde B, Hainaut P, Herin M, Kunuth A, Lemoine C, Weighants P, Van der Bruggen P Fauchet R, Boon T (1989) Presence of a human melanoma of multiple antigens recognized by autologous CTL. Int J Cancer 44:643

    Google Scholar 

  23. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE Ettinghausen SE, Matory YL, Skibber JM, Shilone E, Vetto JT, Seipp CA, Simpson C, Reichert CM (1985) Observation of the systemic administration of autologous lymphokine activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313:1485

    PubMed  Google Scholar 

  24. Bar MH, Sznol M, Atkins MB, Ciobanu N, Micetich KC, Boldt DH, Mangolin AK, Arouson FR, Rayner AA, Hawskins MJ (1990) Metastatic malignant melanoma treated with combined bolus and continuous infusion interleukin-2 and lymphokine activated killer cells. J Cli Oncol 8:1138

    Google Scholar 

  25. Rosenberg SA, Spiess P, Lafrenier R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318

    PubMed  Google Scholar 

  26. Smith KA (1988) Interleukin-2; inception, impact, and implications. Science 240:1169

    PubMed  Google Scholar 

  27. Lotze MT, Finn OJ (1990) Recent advances in cellular immunology: implications for immunity to cancer. Immunol Today 11:190

    PubMed  Google Scholar 

  28. Nelson BE, Borden EC (1989) Interferons: biological and clinical effects. Semin Surg Oncol 5:391

    PubMed  Google Scholar 

  29. Siegel JP (1988) Effect of interferon-gamma on the activation of human lymphocytes. Cell Immunol 111:461

    PubMed  Google Scholar 

  30. Dinarello CA, Cannon JG, Wolff SM, Brenheim HA, Beutter B, Cerami A, Figari IS, Pallatino MA, O'Connor JV (1986) Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin-1. J Exp Med 163:1433

    PubMed  Google Scholar 

  31. Panl NL, Ruddle NH (1988) Lymphotoxin. Annu Rev Immunol 6:407

    PubMed  Google Scholar 

  32. West WH, Tauer KW, Yannelli JR, Marshall GD, Orr DW, Thurman GB, Olhham RK (1987) Constant infusion recombinant IL-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 316:898

    PubMed  Google Scholar 

  33. Barnavon Y, Iwaki H, Bash JA, Wallack MK (1988) Treatment with vaccinia colon oncolysates and IL-2 for murine hepatic metastasis. J Surg Res 45:523

    PubMed  Google Scholar 

  34. Arroyo PJ, Bash JA, Wallack MK (1993) Active specific immunotherapy with vaccinia colon oncolysate enhances the immunomodulatory and antitumor effects on interleukin-2 and interferon alpha in a murine hepatic metastasis model. Cancer Immunol Immunother 31:305

    Google Scholar 

  35. Lotze MT, Chang AE, Seipp CA, Simpson C, Vetto JT, Rosenberg SA (1986) High dose recombinant interleukin-2 in the treatment of patients with disseminated cancer JAMA 256:3117

    PubMed  Google Scholar 

  36. Konrad MW, Hemstreet G, Hersh EM, Mansell PNA, Mertelsmann R, Koltiz JF, Bradley C (1990) Pharmacokinetics of recombinant interleukin-2 in humans. Cancer Res 50:2009

    PubMed  Google Scholar 

  37. Fearon FR, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW Karasuyama H, Vogelstein B, Frost P (1990) IL-2 production by tumor cells bypasses T helper function in the generation of an antitumor responses. Cell 60:397

    PubMed  Google Scholar 

  38. LaFreniere R, Rosenberg SA (1986) A novel approach to the generation and identification of experimental hepatic metastases in a murine model. J Natl Cancer Inst 76:309

    PubMed  Google Scholar 

  39. Flexner C, Ambros H, Moss B (1987) Prevention of vaccinia-virus infection in immunodeficient mice by vector-directed IL-2 expression. Nature 330:259

    PubMed  Google Scholar 

  40. Karupiah G, Coupar BEH, Andrew ME, Boyle DB, Phillips SM, Mullbacher A, Blanden RV, Ramshaw IA (1990) Elevated natural killer responses in mice infected with recombinant virus encoding murine IL-2. J Immunol 144:2

    Google Scholar 

  41. Sivanandham M, Mukherji BJ (1989) Functionally different HTLV I-infected T cell lines with the same phenotype derived from a patient with melanoma. Immunol Lett 23:149

    PubMed  Google Scholar 

  42. Fikete E (1938) A comparative morphological study of mammary gland in high and low tumor strain in mice. Am J Pathol 14:557

    Google Scholar 

  43. Sivanandham M, Chakraborthy NG, Robbins GR, Mukherji BJ (1991) Clonal expansion of T cells following in vitro stimulation with autologous melanoma cells and interleukin-2 studied by molecular analysis of T cell receptor. Immunol Lee 28:155

    Google Scholar 

  44. Ramshaw IA, Andrew ME, Phillips SM, Boyle DB, Coupar BEH (1987) Recovery of immunodeficient mice from a vaccinia-virus/IL-2 recombinant infection. Nature 329:545

    PubMed  Google Scholar 

  45. Sznol M, Dutcher JP, Atkins MB, Rayner ARA, Margolin KA, Gaynor ER, Weiss GR, Aronoson F, Parkinson DR, Hawkins MJ (1989) Reviews of interleukin-2 alone and interleukin-2/LAK clinical trials in metastatic malignant melanoma. Cancer Treat Rev 16:29

    PubMed  Google Scholar 

  46. Krown SE (1986) Interferon and interferon inducers in cancer treatments. Semin Oncol 13:207

    PubMed  Google Scholar 

  47. Goldstein D, Laszlo J (1986) Interferon therapy in cancer: From imagination to interferon. Cancer Res 46:4315

    PubMed  Google Scholar 

  48. Spiggs DR, Sherman ML, Michie E, Arthur KA, Imamura K, Wilmore D, Frei II E, Kufe DW (1988) Recombinant tumor necrosis factor administered as a 24-h intravenous infusion. A phase I and pharmacology study. J Natl Cancer Inst 80:1039

    PubMed  Google Scholar 

  49. Blick M, Sherwin SA, Rosenblum M (1987) et al.: recombinant tumor necrosis factor in cancer patients. Cancer Res 47:2986–2989

    PubMed  Google Scholar 

  50. Tepper RI (1989) Murine interleukin-4 displays potent antitumor activity in vivo. Cell 57:503–512

    PubMed  Google Scholar 

  51. Dranoff G, Jaffee E, Lazenby A, Golumbek B, Levitsky H, Brose K, Jakson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocute-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting antitumor immunity. Proc Natl Acad Sci USA 90:3539

    PubMed  Google Scholar 

  52. Estin CD, Stevenson US, Plowman GD, Shiu-Lok HU, Sridhar P, Hellstrom I, Hellstrom KE (1988) Recombinant vaccinia-virus vaccine against the human melanoma antigen p97 for use in immunotherapy. Proc Natl Acad Sci USA 85:1052

    PubMed  Google Scholar 

  53. Kantor J, Irvine K, Abrams S, Kufman H, Dipietro J, Schlom J (1992) Antitumor activity and immune resonses induced by a recombinant carcinoembryonic antigen-vaccinia-virus vaccine. J Natl Cancer Inst 84:1084

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivanandham, M., Scoggin, S.D., Tanaka, N. et al. Therapeutic effect of a vaccinia colon oncolysate prepared with interleukin-2-gene encoded vaccinia virus studied in a syngeneic CC-36 murine colon hepatic metastasis model. Cancer Immunol Immunother 38, 259–264 (1994). https://doi.org/10.1007/BF01533517

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01533517

Key words

Navigation