Skip to main content
Log in

Orientation and structure-building role of the water molecules bound at the contact surface of the dihydrofolate reductase-methotrexate complex

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Orientation of ten water molecules bound strongly at the contact surface of the dihydrofolate reductase-methotrexate enzyme-inhibitor complex was determined theoretically. To optimize the orientation of the water molecules, a recent method based on a simple electrostatic model was applied. The electrostatic complementarity in the binary complex was investigated using the lock-and-key model, considering the effect of the water molecules as well. The strongly bound water molecules improve the electrostatic fit in the pteridine region of methotrexate. Their role in the benzoic amide andγ-glutamate region is to decrease the internal energy by creating water bridges among remote polar sites making it possible to form H-bonds. Some modifications in the inhibitor structure were proposed for achieving greater inhibitor potency. The presumably enhanced effect is ascribed to the free energy gain in repelling the water molecules from the contact surface to the bulk of the solvent, and, in other cases, to internal energy decreases due to better electrostatic fit in the enzyme-inhibitor complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaney, J.M., Hansch, C., Silipo, C. and Vittoria, A., Chem. Rev., 84 (1984) 333–407.

    Google Scholar 

  2. Birdsall, B., Feeney, F., Pascual, C., Roberts, G.C.K., Kompis, I., Then, R.L., Mueller, K. and Kroehn, A., J. Med. Chem., 27 (1984) 1672–1676.

    Google Scholar 

  3. Kuyper, L.F., Roth, B., Baccanari, D.P., Ferone, R., Beddell, C.R., Champness, J.N., Stammers, D.K., Dann, J.G., Norrington, F.E., Baker, D.J. and Goodford, P.J., J. Med. Chem., 28 (1985) 303–311.

    Google Scholar 

  4. DesJarlais, R.L., Sheridan, R.P., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 2149–2153.

    Google Scholar 

  5. Mueller, K., Amman, H.J., Doran, D.M., Gerber, P. and Schrepfer, G., In Harms, A.F. (Ed.) Innovative Approaches in Drug Research, Elsevier Science Publishers, Amsterdam, 1986, pp. 125–134.

    Google Scholar 

  6. Hansch, C. and Klein, T.E., Acc. Chem. Res., 19 (1986) 392–400.

    Google Scholar 

  7. Komatsu, K., Nakamura, H., Nakagawa, S. and Umeyama, H., Chem. Pharm. Bull., 32 (1984) 3313–3316.

    Google Scholar 

  8. Sheridan, R.P. and Venkataraghavan, R., Acc. Chem. Res., 20 (1987) 322–329.

    Google Scholar 

  9. Gready, J.E., J. Mol. Struct. (THEOCHEM), 109 (1984) 231–244.

    Google Scholar 

  10. Richards, W.G. and Cuthbertson, A.F., J. Chem. Soc., Chem. Commun., (1984) 167–168.

  11. Cuthbertson, A.F. and Richards, W.G., J. Chem. Res. (S), (1985) 354–355.

    Google Scholar 

  12. Cuthbertson, A.F. and Richards, W.G., J. Mol. Struct. (THEOCHEM), 134 (1986) 411–414.

    Google Scholar 

  13. Höltje, H.-D. and Zunker, P., J. Mol. Struct. (THEOCHEM), 134 (1986) 429–436.

    Google Scholar 

  14. Gready, J.E., Biochemistry, 24 (1985) 4761–4766.

    Google Scholar 

  15. Andrews, P.R., Sadek, M., Spark, M.J. and Winkler, D.A., J. Med. Chem., 29 (1986) 698–708.

    Google Scholar 

  16. Welsh, W.J. and Cody, V., In Cooper, B.A. and Whitehead, V.M. (Eds.) Chemistry and Biology of Pteridines 1986, Walter de Gruyter, Berlin, 1986, pp. 799–802.

    Google Scholar 

  17. Komatsu, K., Nakagawa, S., Umeyama, H. and Nakamura, H., Chem. Pharm. Bull., 35 (1987) 1880–1895.

    Google Scholar 

  18. Ghose, A.K. and Crippen, G.M., J. Med. Chem., 28 (1985) 333–346.

    Google Scholar 

  19. Mabilia, M., Pearlstein, R.A. and Hopfinger, A.J., Eur. J. Med. Chem. Chim. Ther., 20 (1982) 163–174.

    Google Scholar 

  20. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650–13662.

    Google Scholar 

  21. Filman, D.J., Bolin, J.T., Matthews, D.A. and Kraut, J., J. Biol. Chem., 257 (1982) 13663–13672.

    Google Scholar 

  22. Finney, J.L., In Franks, F. (Ed.) Water, a Comprehensive Treatise, Vol. 6, Plenum Press, New York, 1979, pp. 47–138.

    Google Scholar 

  23. Warshel, A. and Russell, S.T., Q. Rev. Biophys., 17 (1984) 283–222.

    Google Scholar 

  24. Warshel, A., Russell, S. and Sussman, F., Isr. J. Chem., 27 (1986) 217–224.

    Google Scholar 

  25. Náray-Szabó, G. and Nagy, P., Enzyme, 36 (1986) 44–53.

    Google Scholar 

  26. Nagy, P., Angyán, J.G. and Náray-Szabó, G., J. Mol. Struct. (THEOCHEM), 149 (1987) 169–176.

    Google Scholar 

  27. Náray-Szabó, G. and Nagy, P., In Rein, R. (Ed.) Molecular Basis of Cancer, Part B, Alan R. Liss, New York, 1985, pp. 105–113.

    Google Scholar 

  28. Nagy, P. and Náray-Szabó, G., Can. J. Chem., 63 (1985) 1694–1698.

    Google Scholar 

  29. Bonaccorsi, R., Scrocco, E. and Tomasi, J., J. Chem. Phys., 52 (1970) 5270–5284.

    Google Scholar 

  30. Scrocco, E. and Tomasi, J., Top. Curr. Chem., 42 (1973) 95–170.

    Google Scholar 

  31. Srebrenik, S., Weinstein, H. and Pauncz, R., Chem. Phys. Lett., 20 (1973) 419–423.

    Google Scholar 

  32. Filman, D.J., Matthews, D.A., Bolin, J.T. and Kraut, J., Protein Data Bank File40SB13, 153 (1985).

  33. Bernstein, F.C., Koetzle, T.F., Williams, G.T.B., Mayer, E.F., Brice, M.D., Rogers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535–542.

    Google Scholar 

  34. Angyán, J.G. and Náray-Szabó, G., Program PROTPOT, 1981, CHINOIN Pharmaceutical and Chemical Works, P.O. Box 110, H-1325 Budapest.

    Google Scholar 

  35. Angyán, J.G. and Náray-Szabó, G., J. Theor. Biol., 103 (1983) 349–356.

    Google Scholar 

  36. Náray-Szabó, G., Kramer, G., Nagy, P. and Kugler, S., J. Comput. Chem., 8 (1987) 555–561.

    Google Scholar 

  37. Nagy, P., J. Mol. Struct. (THEOCHEM), in press.

  38. Náray-Szabó, G., Int. J. Quant. Chem., 16 (1979) 265–272.

    Google Scholar 

  39. Náray-Szabó, G., Grofcsik, K., Kósa, K., Kubinyi, M. and Martin, A., J. Comput. Chem., 2 (1981) 58–62.

    Google Scholar 

  40. Nagy, P., Angyán, J.G., Náray-Szabó, G. and Peinel, G., Int. J. Quant. Chem., 31 (1987) 927–939.

    Google Scholar 

  41. Kollman, P., McKelvey, J., Johansson, A. and Rothenberg, S., J. Am. Chem. Soc., 97 (1975) 955–965.

    Google Scholar 

  42. Kollman, P., J. Am. Chem. Soc., 99 (1977) 4875–4894.

    Google Scholar 

  43. Douglas, J.E. and Kollman, P.A., J. Am. Chem. Soc, 102 (1980) 4295–4302.

    Google Scholar 

  44. Jencks, W.P., Adv. Enzymol., 43 (1975) 219–410.

    Google Scholar 

  45. Andrews, P.R., Craik, D.J. and Martin, J.L., J. Med. Chem., 27 (1984) 1648–1657.

    Google Scholar 

  46. Bird, O.D., Vaitkus, J.W. and Clarke, J., Mol. Pharmacol., 6 (1970) 573–575.

    Google Scholar 

  47. Chaykowsky, M., Rosowsky, A., Papathanasopoulos, N., Chen, K.K.N., Modest, E.J., Kisliuk, R.L. and Gaumont, Y., J. Med. Chem., 17 (1974) 1212–1216.

    Google Scholar 

  48. Rosowsky, A. and Chen, K.K.N., J. Med. Chem., 17 (1974) 1308–1311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, P. Orientation and structure-building role of the water molecules bound at the contact surface of the dihydrofolate reductase-methotrexate complex. J Computer-Aided Mol Des 2, 65–76 (1988). https://doi.org/10.1007/BF01532054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01532054

Key words

Navigation