Skip to main content
Log in

Inertia effects in rheometrical flow systems

Part 1: The orthogonal rheometer

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

The flow field of a linear viscoelastic material in the orthogonal rheometer, taking fluid inertia into account, has been studied theoretically and an exact solution is given. The flow field of a Newtonian liquid is included in this solution as a special case. The forces on the plates are readily deduced from this solution. The paper concludes with an energy consideration.

Zusammenfassung

Das Strömungsfeld eines linear-viskoelastischen Stoffes im Orthogonal-Rheometer wurde unter Berücksichtigung der Flüssigkeitsträgheit theoretisch untersucht und eine exakte Lösung dafür angegeben. Das Strömungsfeld einer newtonschen Flüssigkeit ergibt sich als Sonderfall dieser Lösung. Die auf die Platten ausgeübten Kräfte lassen sich in einfacher Weise aus dieser Lösung ableiten. Abschließend wird eine Energiebetrachtung angestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

distance between axis of upper and lower plate

c * = c′ + ic″:

complex velocity of propagation of shear waves

h :

distance between the plates

i :

\(i = \sqrt { - 1} \)

k * = k′ − ik″:

complex wave number

k = (ρω/2η)1/2 :

complex wave number

k e :

wave number in a Hookean material

n = 0, 1, 2, ⋯:

wave number in a Hookean material

t :

time

x, y, z :

Cartesian coordinates

A :

area of a plate

A + :

displacement amplitude of shear wave in +z direction

A :

displacement amplitude of shear wave in−z direction

E :

kinetic energy

F :

force on lower plate

G * = G′ + iG″:

complex shear modulus

R :

radius of the plates

ΔW :

energy dissipated in the sample during one cycle

δ :

loss angle

Γ :

propagation factor

λ :

wave length

ω :

angular velocity

η :

viscosity

ρ :

density

τ :

shear stress

ξ :

particle displacement

References

  1. Kimball, A. L., D. E. Lovell Phys. Rev.30, 948 (1927).

    Google Scholar 

  2. Gent, A. N. Brit. J. Appl. Phys.11, 165 (1960).

    Google Scholar 

  3. Maxwell, B., R. P. Chartoff Trans. Soc. Rheol.9, 41 (1965).

    Google Scholar 

  4. Blyler, jr. L. L., S. J. Kurtz J. Appl. Phys.11, 127 (1967).

    Google Scholar 

  5. Bird, R. B., E. K. Harris, jr. Amer. Inst. Chem. Eng. J.14, 758 (1968);16, 149 (1970).

    Google Scholar 

  6. Huilgol, R. R. Trans. Soc. Rheol.13, 513 (1969).

    Google Scholar 

  7. Gordon, R. J., W. R. Schowalter Amer. Inst. Chem. Eng. J.16, 318 (1970).

    Google Scholar 

  8. Yamamoto, M. Japan. J. Appl. Phys.8, 1252 (1969).

    Google Scholar 

  9. Abbott, T. N. G., K. Walters J. Fluid Mech.40, 205 (1970).

    Google Scholar 

  10. Goldstein, C., Unsteady Flows of Viscoelastic Fluids: Non Linear Effects, Ph. D. Thesis, Dept. Chem. Eng., Princeton University (1971).

  11. Waterman, H. A. J. Phys. D.3, 290 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waterman, H.A. Inertia effects in rheometrical flow systems. Rheol Acta 15, 444–453 (1976). https://doi.org/10.1007/BF01530347

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01530347

Keywords

Navigation