Skip to main content
Log in

Method of testing the heat resistance of specimens of brittle, electrically conducting materials using electron-beam heating

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

Conclusions

  1. 1.

    We suggest a method of testing the heat resistance of flat specimens of brittle, electrically conducting materials in the temperature range −170° to +1000°C with an error of determining heat fluxes ±10% according to the electric parameters of an electron beam.

  2. 2.

    On specimens of ZrC0.9326×1 mm in size the following values of the criteria of heat resistance were established: at 50°C R=65°, R′=1.3·103W/m; at −170°C R=106°, R′=2.6·103 W/m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. V. D. Kingery, Measurements at High Temperatures [Russian translation], Metallurgiya, Moscow (1963).

    Google Scholar 

  2. M. Ulrickson, “Material studies related to TFTR limiters and wall armor,” J. Nucl. Mater.,85–86, 231–235 (1979).

    Google Scholar 

  3. A. A. Kaplan, “Test installation with electronic heating URÉ-402,” Probl. Prochn., No. 2, 120–122 (1972).

    Google Scholar 

  4. G. N. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, Longman (1973).

  5. V. V. Bashenko, Electron-Beam Installations [in Russian], Mashinostroenie, Leningrad (1972).

    Google Scholar 

  6. V. V. Apollonov, A. I. Barchukov, N. V. Karlov, et al., “Thermal action of a powerful laser beam on the surface of a solid,” Kvantovaya Elektron.,2, No. 2, 380–390 (1975).

    Google Scholar 

  7. W. Nowacki, Problems of Thermoelasticity [Russian translation], Izd. Akademii Nauk SSSR, Moscow (1962).

    Google Scholar 

  8. B. A. Boley and J. H. Weiner, Theory of Thermal Stresses, Wiley (1960).

  9. N. N. Rykalin, A. A. Uglov, I. Yu. Smurov, and V. S. Lobanov, “How to obtain simple analytical expressions describing the process of heating metals with concentrated energy sources,” Fiz. Khim. Obrab. Mater., No. 6, 3–11 (1979).

    Google Scholar 

  10. B. H. Morrison and L. L. Sturgess, “The thermal diffusivity and conductivity of zirconium carbide and niobium carbide from 100 to 2500°K,” Rev. Int. Hautes Temp. Ref.,7, No. 4, 351–358 (1970).

    Google Scholar 

  11. A. G. Lanin, V. P. Popov, A. S. Maskaev, et al., “The strength of carbide-graphite composites under mechanical and thermal loading,” Probl. Prochn., No. 2, 89–95 (1981).

    Google Scholar 

  12. V. S. Egorov and V. P. Popov, “Limit thermal stresses indisks of brittle materials,” Probl. Prochn., No. 11, 53–56 (1975).

    Google Scholar 

  13. I. N. Rykalin, A. A. Uglov, and M. M. Nizametdinov, “Calculation of the heating of materials by laser beam with the temperature dependence of the thermophysical coefficients taken into account,” Kvantovaya Elektron.,4, No. 7, 1509–1516 (1977).

    Google Scholar 

  14. R. A. Andrievskii, A. G. Lanin, and G. A. Rymashevskii, The Strength of High-Melting Compounds [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

Download references

Authors

Additional information

Podolsk. Translated from Problemy Prochnosti, No. 9, pp. 77–81, September, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, V.P., Lanin, A.G. & Bochkov, N.A. Method of testing the heat resistance of specimens of brittle, electrically conducting materials using electron-beam heating. Strength Mater 16, 1304–1308 (1984). https://doi.org/10.1007/BF01530010

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01530010

Keywords

Navigation