Skip to main content
Log in

Calculation of the crack resistance of plane structural elements using the j-integral. Report No. 1. Substantiation of the method

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974), 640 pp.

    Google Scholar 

  2. N. A. Makhutov, Resistance of Structural Elements to Brittle Fracture [in Russian], Mashinostroenie, Moscow (1973).

    Google Scholar 

  3. G. S. Vasil'chenko and P. F. Koshelev, Practical Use of Fracture Mechanics to Evaluate the Strength of Structures [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  4. F. M. Burdekin and M. G. Dawes, “Practical use of linear elastic and yielding fracture mechanics with particular reference to pressure vessels,” in: Practical Application of Fracture Mechanics to Pressure Vessel Technology, Inst. Mech. Eng., London (1971), pp. 3–28.

    Google Scholar 

  5. V. V. Panasyuk, Limit Equilibrium of Brittle Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1968).

    Google Scholar 

  6. E. M. Morozov, “Calculation of strength in the presence of cracks,” in: Porosity of Materials and Structures [in Russian], Naukova Dumka, Kiev (1975), pp. 323–333.

    Google Scholar 

  7. N. A. Makhutov, Strain Criteria of Fracture and Calculation of the Strength of Structural Elements [in Russian], Mashinostroenie, Moscow (1981).

    Google Scholar 

  8. Recommended Technical Materials. Recommendations on Evaluating the Strength of Full-Scale Structures with the Use of Fracture Mechanics Characteristics, TsNIITMASh-IMASh, Moscow (1977).

  9. F. M. Burdekin, The British Standard Committee WEE/37 Draft and IIW Approach, Vol. 1, Development Press. Vess. (1979), pp. 63–94.

  10. R. P. Harrison, K. Loosemore, and I. Milne, “Assessment of the integrity of structures containing defects,” CEGB Report RH/R6, Rev., Vol. 1, 41–50 (1977).

    Google Scholar 

  11. G. P. Cherepanov, “Crack propagation in a continuum,” Prikl. Mat. Mekh.,31, No. 3, 476–488 (1967).

    Google Scholar 

  12. J. R. Rice, “A path independent integral and approximate analysis of strain concentrations by notches and crack,” J. Appl. Mech., No. 2, 287–298 (1968).

    Google Scholar 

  13. G. A. Clarke, W. R. Andrews, and I. Begley, “A procedure for the determination of ductile fracture toughness using J-integral techniques,” J. Test. Eval.,7, No. 1, 49–56 (1979).

    Google Scholar 

  14. G. S. Pisarenko, V. P. Naumenko, and G. S. Volkov, Determination of the Crack Resistance of Materials on the Basis of an Energy-Based Contour Integral [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  15. N. A. Makhutov, V. V. Moskvichev, and A. G. Kozlov, “Experimental determination of the energy criterion Jc,” Zavod. Lab., No. 6, 68–75 (1983).

    Google Scholar 

  16. Yu. G. Matvienko and E. M. Morozov, “Criteria of nonlinear fracture mechanics and the stress state at the tip of a crack,” Probl. Prochn., No. 11, 10–13 (1984).

    Google Scholar 

  17. T. Ingham and R. P. Harrison, “A comparison of published methods of calculation of defect significance,” Fitness Purpose Validad. Weld. Constr.: Int. Conf., London, 1981. Abington (1982), pp. 1–15.

  18. L. H. Larsson, “Use of EPFM in design,” in: Adv. Elasto-Plast. Fracture Mech.: Proc. Semin., Varense, 1979. London (1980), pp. 261–278.

  19. J. A. Begley, J. D. Landes, and W. K. Wilson, “An estimation model for the application J-integral,” Fracture Analysis. Am. Soc. Test. Mater. Spec. Tech. Publ., No. 560, 155–169 (1974).

    Google Scholar 

  20. C. E. Turner, “A J-based design curve,” Adv. Elasto-Plast. Fract. Mech.: Proc. Semin., Varese, 1979. London (1980), pp. 301–317.

  21. J. D. G. Sumpter and C. E. Turner, “Design using elastoplastic fracture mechanics,” Int. J. Fract.,12, No. 8, 861–871 (1976).

    Google Scholar 

  22. K. Kalna, “Comparison of fracture toughness parameters,” Proc. Int. Symp., Absorb. Specif. Energy and/or Strain Energy Density Criterion, Budapest (1980), pp. 385–389.

  23. C. E. Turner, “The J-estimation curve, R-curve, and tearing resistanceconcepts leading to a proposal for J-based design curve against fracture,” Fitness Purpose Validad. Weld. Constr. Int. Conf., London, 1981. Abington (1982). Vo. 1, pp. 17/1–17/10.

  24. F. M. Burdekin, A. Cowan, I. Milne, and C. E. Turner, “Comparison of COD, R6, and J-contour integral methods of defect assessment modified to give critical flaw size,” Fitness Purpose Validad. Weld. Constr. Int. Conf., London, 1981. Abington (1982). Vol. 1, pp. 41/1–41/6.

  25. A. G. Kozlov, V. V. Moskvichev, and S. V. Sukhorukov, “Effect of temperature and strain rate on the crack resistance of structural steels,” in: Strength of Materials and Structures at Low Temperatures [in Russian], Naukova Dumka, Kiev (1984), pp. 103–109.

    Google Scholar 

  26. S. V. Sukhorukov, “Effect of strain rate on the yield point and crack resistance of structural steels,” in: Studies of Lightweight Metal Structures in Commercial Buildings [in Russian], Krasnoyar. PromstroiNIIproekt, Krasnoyarsk (1983), pp. 85–91.

    Google Scholar 

Download references

Authors

Additional information

A. A. Blagonravov Institute of Mechanical Engineering, Moscow. Krasnoyarsk Promstroi-NIIproekt. Translated from Problemy Prochnosti, No. 8, pp. 3–8, August, 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makhutov, N.A., Moskvichev, V.V., Kozlov, A.G. et al. Calculation of the crack resistance of plane structural elements using the j-integral. Report No. 1. Substantiation of the method. Strength Mater 20, 977–983 (1988). https://doi.org/10.1007/BF01528666

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01528666

Keywords

Navigation