Skip to main content
Log in

Superantigen-staphylococal-enterotoxin-A-dependent and antibody-targeted lysis of GD2-positive neuroblastoma cells

  • Original Article
  • Anti-GD2 Antibody, Cytotoxic T Cells, Immunoconjugate, Neuroblastoma, Superantigens
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Superantigens such as the staphylococcal enterotoxin A (SEA) are among the most potent T cell activators known. They bind to major histocompatibility complex (MHC) class II molecules and interact with T cells depending on their T cell receptor (TCR) Vβ expression. Superantigens also induce a variety of cytokines and trigger a direct cytotoxic effect against MHC-class-II-positive target cells. In order to extend superantigen-dependent cell-mediated cytotoxicity (SDCC) to MHC-class-II-negative neuroblastoma cells, SEA was linked to the anti-ganglioside GD2 human/mouse chimeric monoclonal antibody (mAb) ch14.18. Ganglioside GD2 is expressed on most tumours of neuroectodermal origin but is expressed to a lesser extent on normal tissues. The linkage of ch 14.18 to SEA was achieved either with a protein-A-SEA fusion protein or by chemical coupling. Both constructs induced T-cell-mediated cytotoxicity towards GD2-positive neuroblastoma cells in an effector-to-target(E∶T)-ratio-and dose-dependent manner in vitro. To reduce the MHC class II affinity of SEA, a point mutation was introduced in the SEA gene (SEAm9) that resulted in 1000-fold less T cell killing of MHC-class-II-expressing cells as compared to native SEA. However, a protein-A-SEAm9 fusion protein mediated cytotoxicity similar to that of protein-A-SEA on ch14.18-coated, MHC-class-II-negative neuroblastoma cells. Taken together, these findings suggest that superantigen-dependent and monoclonal-antibody-targeted lysis may be a potent novel approach for neuroblastoma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Åkerblom E, Dohlsten M, Brynö C, Mastej M, Steringer I, Hedlund G, Lando P, Kalland T (1993) Preparation and characterization of conjugates of monoclonal antibodies and staphylococcal enterotoxin A using a new hydrophilic cross-linker. Bioconjugate Chem 4:455–466

    Google Scholar 

  2. Bernhard H, Karbach J, Strittmatter W, Meyer zum Büschenfelde KH, Knuth A (1993) Induction of tumor-cell lysis by bi-specific antibody recognizing ganglioside GD2 and T-cell antigen CD3. Int J Cancer 55:465–470

    PubMed  Google Scholar 

  3. Dohlsten M, Lando PA, Hedlund G, Trowsdale J, Kalland T (1990) Targeting of human cytotoxic T lymphocytes to MHC class II-expressing cells by staphylococcal enterotoxins. Immunology 71:96–100

    PubMed  Google Scholar 

  4. Dohlsten M, Hedlund G, Åkerblom E, Lando PA, Kalland T (1991) Monoclonal antibody-targeted superantigens: a different class of anti-tumor agents. Proc Natl Acad Sci USA 88:9287–9291

    PubMed  Google Scholar 

  5. Dohlsten M, Abrahamsén L, Björk P, Lando PA, Hedlund G, Forsberg G, Brodin T, Gascoigne NRJ, Förberg C, Lind P, Kalland T (1994) Monoclonal antibody-superantigen fusion proteins: tumor-specific agents for T-cell-based tumor therapy. Proc Natl Acad Sci USA 91:8945–8949

    PubMed  Google Scholar 

  6. Evans AE (1980) Staging and treatment of neuroblastoma. Cancer 45:1799–1802

    PubMed  Google Scholar 

  7. Fleischer B, Schrezenmeier H (1988) T cell stimulation by staphylococcal enterotoxins. J Exp Med 167:1697–1707

    PubMed  Google Scholar 

  8. Gillies SD, Lo KM, Wesolowski J (1989) High-level expression of chimeric antibodies using adapted cDNA variable region cassettes. J Immunol Methods 125:191–202

    PubMed  Google Scholar 

  9. Gillies SD, Reilly EB, Lo KM, Reisfeld RA (1992) Antibodytargeted interleukin 2 stimulates T-cell killing of autologous tumor cells. Proc Natl Acad Sci USA 89:1428–1432

    PubMed  Google Scholar 

  10. Gottstein C, Schön G, Tawadros S, Kube D, Wargalla-Plate UC, Hansmann ML, Wacker HH, Berthold F, Diehl V, Engert A (1994) Antidisialoganglioside ricin A-chain immunotoxins show potent antitumor effects in vitro and in disseminated human neuroblastoma severe combined immunodeficiency mouse model. Cancer Res 54:6186–6193

    PubMed  Google Scholar 

  11. Handgretinger R, Baader P, Dopfer R, Klingebiel T, Reuland P, Treuner J, Reisfeld RA, Niethammer D (1992) A phase I study of neuroblastoma with the anti-ganglioside GD2 antibody 14. G2a. Cancer Immunol Immunother 35:199–204

    PubMed  Google Scholar 

  12. Handgretinger R, Anderson K, Lang P, Dopfer R, Klingebiel T, Schrappe M, Reuland P, Gillies SD, Reisfeld RA, Niethammer D (1995) A phase I study of human/mouse chimeric antiganglioside GD2 antibody ch14.18 in patients with neuroblastoma. Eur J Cancer (in press)

  13. Hank JA, Robinson RR, Surfus J, Mueller BM, Reisfeld RA, Cheung NK, Sondel PM (1990) Augmentation of antibody dependent cell mediated cytoxicity following in vivo therapy with recombinant interleukin 2. Cancer Res 50:5234–5239

    PubMed  Google Scholar 

  14. Hank JA, Surfus J, Gan J, Chew TL, Hong R, Tans K, Reisfeld RA, Seeger RC, Reynolds CP, Bauer M, Wiersma S, Hammond D, Sondel PM (1994) Treatment of neuroblastoma patients with antiganglioside GD2 antibody plus interleukin-2 induces antibody-dependent cellular cytotoxicity against neuroblastoma detected in vitro. J Immunother 15:29–37

    PubMed  Google Scholar 

  15. Ihle J, Holzer U, Krull F, Dohlsten M, Kalland T, Niethammer D, Dannecker GE (1995) Antibody-targeted superantigens induce lysis of major histocompatibility complex class II-negative T-cell leukemia lines. Cancer Res 55:623–628

    PubMed  Google Scholar 

  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  17. Marrack P, Kappler J (1990) The staphylococcal enterotoxins and their relatives. Science 248:705–711

    PubMed  Google Scholar 

  18. Mueller BM, Romerdahl CA, Gillies SD, Reisfeld RA (1990) Enhancement of antibody-dependent cytotoxicity with a chimeric anti-GD2 antibody. J Immunol 144:1382–1386

    PubMed  Google Scholar 

  19. Mujoo K, Cheresh DA, Yang HM, Reisfeld RA (1987) Disialoganglioside GD2 on human neuroblastoma cells target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth. Cancer Res 47:1098–1104

    PubMed  Google Scholar 

  20. Mujoo K, Reisfeld RA, Cheung L, Rosenblum MG (1991) A potent and specific immunotoxin for tumor cells expressing disialoganglioside GD2. Cancer Immunol Immunother 34:198–204

    PubMed  Google Scholar 

  21. Murray JL, Cunningham JE, Brewer H, Mujoo K, Zukiwski AA, Podoloff DA, Kasi LP, Bhadkamkar V, Fritsche HA, Benjamin RS, Legha SS, Ater JL, Jaffe N, Itoh K, Ross MI, Bucana CD, Thompson L, Cheung L, Rosenblum MG (1994) Phase I trial of murine monoclonal antibody 14G2a administrated by prolonged intravenous infusion in patients with neuroectodermal tumors. J Clin Oncol 12:184–193

    PubMed  Google Scholar 

  22. Nilsson B, Moks T, Abrahamsén L, Elmblad A, Holmgren E, Henriksson C, Jones TA, Uhlen M (1987) A synthetic IgG binding domain based on staphylococcal protein A. Protein Eng 1:107–113

    PubMed  Google Scholar 

  23. Ochi A, Migita K, Xu J, Siminovitch K (1993) In vivo tumor immunotherapy by a bacterial superantigen. J Immunol 151:3180–3186

    PubMed  Google Scholar 

  24. Pastan I, FitzGerald D (1991) Recombinant toxins for cancer treatment. Science 254:1173–1177

    PubMed  Google Scholar 

  25. Pochedly C (ed) (1990) Neuroblastoma: tumor biology and therapy. CRC, Boca Raton, Fla

    Google Scholar 

  26. Reisfeld RA, Cheresh DA (1987) Human tumor antigens. Adv Immunol 40:323–377

    PubMed  Google Scholar 

  27. Riethmüller G, Schneider-Gädicke E, Johnson JP (1993) Monoclonal antibodies in cancer therapy. Curr Opin Immunol 5:732–739

    PubMed  Google Scholar 

  28. Sabzevari H, Gillies SD, Mueller BM, Pancook JD, Reisfeld RA (1994) A recombinant antibody-interleukin 2 fusion protein suppresses growth of hepatic human neuroblastoma metastases in severe combined immunodeficiency mice. Proc Natl Acad Sci USA 91:9626–9630

    PubMed  Google Scholar 

  29. Saleh MN, Khazaeli MB, Wheeler RH, Allen L, Tilden AB, Grizzle W, Reisfeld RA, Yu AL, Gillies SD, LoBuglio AF (1992) Phase I trial of the chimeric anti-GD2 monoclonal antibody ch14.18 in patients with malignant melanoma. Hum Antibod Hybridomas 3:19–24

    Google Scholar 

  30. Schulz G, Cheresh DA, Varki NM, Yu A, Staffileno LK, Reisfeld RA (1984) Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res 44:5914–5920

    PubMed  Google Scholar 

  31. Siegall CB (1994) Targeted toxins as anticancer agents. Cancer 74:1006–1012

    PubMed  Google Scholar 

  32. Titus JA, Garrido MA, Hecht TT, Winkler DF, Wunderlich JR, Segal DM (1987) Human T-cells targeted with anti-T3 cross-linked to antitumor antibody prevent tumor growth in nude mice. J Immunol 138:4018–4022

    PubMed  Google Scholar 

  33. Weiner GJ, Hillstrom JR (1991) Bispecific anti-idiotype/anti-CD3 antibody therapy of murine B cell lymphoma. J Immunol 147:4035–4044

    PubMed  Google Scholar 

  34. White J, Herman A, Pullen AM, Kubo R, Kappler JW, Marrack P (1989) The Vβ-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell 56:27–35

    PubMed  Google Scholar 

  35. Wong SS (1991) Chemistry of protein conjugation and cross-linking. CRC, Boca Raton, Fla, pp 267–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Deutsche Krebshilfe Grant W23/92/Da2 (Mildred Scheel Stiftung).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzer, U., Bethge, W., Krull, F. et al. Superantigen-staphylococal-enterotoxin-A-dependent and antibody-targeted lysis of GD2-positive neuroblastoma cells. Cancer Immunol Immunother 41, 129–136 (1995). https://doi.org/10.1007/BF01527409

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01527409

Key words

Navigation