Skip to main content
Log in

Cytokine-gene-modified tumor vaccination intensified by a streptococcal preparation OK-432

  • Original Article
  • Antitumor Immunity, Tumor Vaccine, Biological Response Modifier, OK-432, Cytokine
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Vaccinations with tumor cells engineered to express certain cytokines have been demonstrated to induce potent and specific antitumor immunity. In our previous report, we carried out a comparative study on the ability of cytokine-gene-modified tumor vaccines to induce host immune responses, and found that irradiated tumor cells, genetically modified to secrete granulocyte/macrophagecolony-stimulating factor (GM-CSF tumor vaccine), were the most potent stimulators of systemic antitumor immunity. In this report, using the experimental tumor models in which the GM-CSF tumor vaccine was less effective in immunopotentiation, we found that the combined use of a biological response modifier (BRM) OK-432 remarkably enhanced the antitumor activity induced by the GM-CSF tumor vaccine. These data indicate the possible role of a BRM such as OK-432 to intensify further the specific tumor vaccination therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe J, Wakimoto H, Nakamura Y, Kanegae Y, Saito I, Aoyagi M, Hirakawa K, Hamada H (1994) Immunogene therapy for cancer by cytokine gene-modified tumor vaccine and tumor-infiltrating lymphocytes (TIL). Cancer Gene Therapy 1: 312

    Google Scholar 

  2. Anderson WF (1994) Gene therapy for cancer. Hum Gene Ther 5: 1

    PubMed  Google Scholar 

  3. Aoki T, Tashiro K, Miyatake S, Kinashi T, Nakano T, Oda Y, Kikuchi H, Honjo T (1992) Expression of murine interleukin 7 in a murine glioma cell line results in reduced tumorigenicity in vivo. Proc Natl Acad Sci USA 89: 3850

    PubMed  Google Scholar 

  4. Asher AL, Mule JJ, Kasid A, Restifo NP, Solo JC, Reichert CM, Jaffe G, Fendly B, Kriegler M, Rosenberg SA (1991) Murine tumor cells transduced with the gene for tumor necrosis factor-α. J Immunol 146: 3227

    PubMed  Google Scholar 

  5. Chen L, Ashe S, Brady WA, Hellstrom I, Hellstrom KE, Ledbetter JA, McGowan P, Linsley PS (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecule CD28 and CTLA-4. Cell 71: 1093

    PubMed  Google Scholar 

  6. Colombo MP, Forni G (1994) Cytokine gene transfer in tumor inhibition and tumor therapy: where are we now? Immunol Today 15: 48

    PubMed  Google Scholar 

  7. Division of Comparative Medicine, MIT (1987) Guidelines of Laboratory Animal Care and Use, Massachusettes Institute of Technology

  8. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and longlasting anti-tumor immunity. Proc Natl Acad Sci USA 90: 3539

    PubMed  Google Scholar 

  9. Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, Karasuyama H, Vogelstein B, Frost P (1990) Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60: 397

    PubMed  Google Scholar 

  10. Fidler IJ (1975) Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 35: 218

    PubMed  Google Scholar 

  11. Gansbacher B, Bannerji R, Daniels B, Zier K, Cronin K, Gilboa E (1990) Retroviral vector-mediated γ-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res 50: 7820

    PubMed  Google Scholar 

  12. Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E (1990) Interleukin-2 gene transfer into tumor cells abrogate tumorigenicity and induces protective immunity. J Exp Med 172: 1217

    PubMed  Google Scholar 

  13. Golumbek PT, Lazenby AJ, Levitsky HI, Jaffee LM, Karasuyama H, Baker M, Pardoll DM (1991) Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science (Washington DC) 254: 713

    Google Scholar 

  14. Hersh EM, Taylor CW (1991) Immunotherapy by active immunization: use of nonspecific stimulants and immunomodulators. In: DeVita VT, Hellman S, Rosenberg SA (eds) Biologic therapy of cancer. Lippincott, Philadelphia, p 613

    Google Scholar 

  15. Hojo H, Hashimoto Y (1981) Cytotoxic cells induced in tumor-bearing rats by aStreptococcus preparation (OK-432). Gann 72: 692

    PubMed  Google Scholar 

  16. Moriya Y, Sato H, Ito K, Saito M, Yoshida T, Ishida N (1993) Induction of antitumor L3T4-positive T cells by OK-432 at tumor sites in mice. Cancer Immunol Immunother 36: 245

    PubMed  Google Scholar 

  17. Pardoll DM (1993) Cancer vaccines. Immunol Today 14: 310

    PubMed  Google Scholar 

  18. Porgador A, Tzehoval E, Katz A, Vadai E, Revel M, Feldman M, Eisenbach L (1992) Interleukin 6 gene transfection into Lewis lung carcinoma tumor cells suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. Cancer Res 52: 3679

    PubMed  Google Scholar 

  19. Porgador A, Bannerji R, Watanabe Y, Feldman M, Gilboa E, Eisenbach L (1993) Antimetastatic vaccination of tumor-bearing mice with two types of IFN-gene-inserted tumor cells. J Immunol 150: 1458

    PubMed  Google Scholar 

  20. Saito M, Nanjo M, Kataoka M, Moriya Y, Sugawara Y, Yoshida T, Ishida N (1988) Adoptive immunotherapy by pantropic killer cells recovered from OK-432-injected tumor sites in mice. Cancer Res 48: 4163

    PubMed  Google Scholar 

  21. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9: 271

    PubMed  Google Scholar 

  22. Talmadge JE, Herberman RB (1986) The preclinical screening laboratory: evaluation of immunomodulatory and therapeutic properties of biological response modifiers. Cancer Treat Rep 70: 171

    PubMed  Google Scholar 

  23. Tepper RI, Pattengale PK, Leder P (1989) Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57: 503

    PubMed  Google Scholar 

  24. Townsend SE, Allison JP (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science (Washington DC) 259: 368

    Google Scholar 

  25. Wakimoto H, Abe J, Nakamura Y, Kanegae Y, Saito I, Aoyagi M, Hirakawa K, Hamada H (1994) Enhanced antitumor effects by cytokine gene-modified tumor vaccines and IL-2 secreting cytotoxic T lymphocytes. In: Gene therapy. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, p. 164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, J., Wakimoto, H., Aoyagi, M. et al. Cytokine-gene-modified tumor vaccination intensified by a streptococcal preparation OK-432. Cancer Immunol Immunother 41, 82–86 (1995). https://doi.org/10.1007/BF01527403

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01527403

Key words

Navigation