Skip to main content
Log in

Effects of experimental cochlear thrombosis on oxygenation and auditory function of the inner ear

  • Original Paper
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

To elucidate the etiology and pathogenesis of sudden hearing loss, the effect of experimental cochlear thrombosis on oxygenation and the auditory function of the inner ear was investigated in anesthetized guinea pigs. Impairment of cochlear blood flow (CBF) was induced by ferromagnetic obstruction of cochlear blood vessels at lowered body temperature. Perilymphatic oxygen partial pressure (PO2) in the basal scala tympani (about 200 μm below the round window membrane) was measured polarographically using micro-coaxial needle electrodes. Auditory function was examined by recording cochlear microphonic (CM) frequency responses, compound action potentials (CAP) and auditory evoked brainstem responses (ABR). Findings demonstrated a considerable decrease in the mean perilymphaticPO2 of 40%, 2 h after the start of the experiment. Mean CM and N1 CAP amplitudes were reduced by about 25% each and ABR by 18%. No significant changes were observed in the latencies of either CAP or ABR. Mean basal CBF was found to decrease by 35%, as measured by laser Doppler flowmetry in a parallel study. The present findings demonstrate that vascular impairment in the inner ear results in a considerable drop in intracochlear oxygenation, causing a significant loss in the auditory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgärtl H, Lübbers DW (1983) Microcoaxial needle sensor for polarographic measurement of local O2 pressure in the cellular range of living tissue — its constructions and properties. In: Gnaiger E, Forstner H (eds) Polarographic oxygen sensors: aquatic and physiological applications. Springer, Berlin Heidelberg New York, pp 37–65

    Google Scholar 

  2. Bohne B-D, Rolle W, Strobl R, Ulrich W-D (1973) MantelThermoelemente zur Temperaturmessung in Medizin und Biologie. Medizintechnik 13:13–16

    Google Scholar 

  3. Giebel W, Schmidt G, Galic M, Winkler B (1985) Occlusion of inner ear vessels by magnetic forces applied to circulating metallic iron particles. Arch Otorhinolaryngol 242:329–335

    PubMed  Google Scholar 

  4. Giebel W, Strömer H, Arold R (1992) Experimentelle Untersuchungen zur Ischämie der Cochlea. I. Methodik. Laryngorhinootologie 71:161–167

    PubMed  Google Scholar 

  5. Haupt H, Scheibe F, Ludwig C (1993) Changes in cochlear oxygenation, microcirculation and auditory function during prolonged general hypoxia. Eur Arch Otorhinolaryngol 250:396–400

    PubMed  Google Scholar 

  6. Lawrence M, Nuttall AL (1972) Oxygen availability in the tunnel of Corti measured by microelectrode. J Acoust Soc Am 52:566–573

    Google Scholar 

  7. Lawrence M, Nuttall AL, Burgio PA (1975) Cochlear potentials and oxygen associated with hypoxia. Ann Otol Rhinol Laryngol 84:499–512

    PubMed  Google Scholar 

  8. Lawrence M, Nuttall AL, Burgio PA (1977) Oxygen reserve and autoregulation in the cochlea. Acta Otolaryngol (Stockh) 83:146–152

    Google Scholar 

  9. Maass B, Baumgärtl H, Lübbers DW (1976) LokalepO2-Mes-sungen mit Nadelelektroden zum Studium der Sauerstoffversorgung und Mikrozirkulation des Innenohres. Arch Otorhinolaryngol 214:109–124

    PubMed  Google Scholar 

  10. Maass B, Baumgärtl H, Lübbers DW (1978) LokalePO 2 undPH2-Messungen mit Mikrokoaxialnadelelektroden an der Basalwindung der Katzencochlea nach akuter oberer zervikaler Sympathektomie. Arch Otorhinolaryngol 221:269–284

    PubMed  Google Scholar 

  11. Mayahara T, Perlman HB (1972) Cochlear microcirculation and oxygen transport. Laryngoscope 82:578–597

    PubMed  Google Scholar 

  12. Prazma J (1982) Perilymphatic and endolymphaticpO2-variations during anoxia, hyperoxia, and hypercapnia. Arch Otolaryngol 108:539–543

    PubMed  Google Scholar 

  13. Scheibe F, Ludwig C, Haupt H, Flemming B (1989) Physiologische Parameter des Meerschweinchens unter Langzeitnarkose mit kontrollierter Beatmung. Z Versuchstierkd 32:25–31

    PubMed  Google Scholar 

  14. Scheibe F, Haupt H, Ludwig C (1992) Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure. Hear Res 63:19–25

    PubMed  Google Scholar 

  15. Scheibe F, Haupt H, Ludwig C (1993) Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure. Eur Arch Otorhinolaryngol 250:281–285

    PubMed  Google Scholar 

  16. Scheibe F, Haupt H, Grunert H (1997) Laser Doppler measurements of inner ear blood flow during experimental thrombosis of cochlear blood vessels in the guinea pig. Eur Arch Otorhinolaryngol 254:86–90

    PubMed  Google Scholar 

  17. Thorne PR, Nuttall AL (1987) Laser Doppler measurements of cochlear blood flow during loud sound exposure in the guinea pig. Hear Res 27:1–10

    PubMed  Google Scholar 

  18. Thorne PR, Nuttall AL (1989) Alterations in oxygenation of cochlear endolymph during loud sound exposure. Acta Otolaryngol (Stockh) 107:71–79

    Google Scholar 

  19. Wagner H, Berndt H, Gerhardt HJ (1974) Zur Erzeugung kalibrierter Schallpegel am Trommelfell des Meerschweinchens. Arch Otorhinolaryngol 206:283–292

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheibe, F., Haupt, H. & Baumgärtl, H. Effects of experimental cochlear thrombosis on oxygenation and auditory function of the inner ear. Eur Arch Otorhinolaryngol 254, 91–94 (1997). https://doi.org/10.1007/BF01526187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01526187

Key words

Navigation