Skip to main content
Log in

An approximate theoretical analysis and experimental verification of turbulent entrance region flow of drag reducing fluids

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

Entry lengths for pipe flows of moderately drag reducing fluids are determined using momentum integral technique. It is shown theoretically that the entry lengths for drag reducing fluids could be significantly larger than the Newtonian fluids flowing turbulently under otherwise identical conditions. The experimental data from the literature bear out the theoretical calculations.

Zusammenfassung

Mit Hilfe der Impuls-Methode wird die Einlauflänge in einer Rohrströmung für Flüssigkeiten mit mäßig starker Widerstandsverminderung berechnet. Es wird vorausgesagt, daß die Einlauflänge für derartige Flüssigkeiten erheblich größer sein kann als für newtonsche Flüssigkeiten unter sonst identischen Bedingungen. Aus der Literatur entnommene experimentelle Daten bestätigen diese theoretischen Berechnungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A 1 :

Coefficient in eq. [7]

A :

Slope of logarithmic velocity profile

a :

Exponent in eq. [10]

B :

Intercept function for logarithmic velocity profile

De:

Deborah number,\(\frac{{\theta _{fl} u*^2 }}{v}\)

f :

Friction factor

F :

Function, eq. [30]

G :

Function given in eq. [11]

\(\bar p\) :

Static pressure, dynes/cm2

q :

Index of power law velocity profile

R :

Pipe radius, cm

r :

Radial distance, cm

R δ :

Core radius, cm

Re:

Reynolds number

ũ :

Axial velocity, cm/s

u c :

Core velocity, cm/s

u + :

Dimensionless velocity, eq. [5]

u * :

Friction velocity,\(\sqrt {\frac{{\tau _w }}{\rho }} \), cm/s

\(\tilde \upsilon \) :

Radial velocity, cm/s

V :

Average velocity, cm/s

x :

Axial distance, cm

x e :

Entry length, cm

y :

Distance from the wall, cm

y + :

Dimensionless distance, eq. [5]

y +I :

Dimensionless viscous sublayer thickness

α :

coefficient in eq. [17]

β :

exponent of Reynolds number in eq. [17]

\(\dot \gamma \) :

shear rate, s−1

δ :

boundary layer thickness, cm

θ fl :

fluid relaxation time, s

µ :

fluid viscosity, gm/cm s

v :

kinematic viscosity, cm2/s

ξ l :

laminar sublayer thickness, dimensionless

ρ :

fluid density, gm/cm3

τ :

shear stress, dynes/cm2

τ w :

shear stress at the wall, dynes/cm2

ψ 1,ψ 2,ψ 3,ψ 4 :

functions in eq. [27]

~:

time averaged quantities

—:

dimensionless quantity

References

  1. Boger, D. V., A. V. Ramamurthy Amer. Ind. Chem. Engg. J.16, 1088 (1970).

    Google Scholar 

  2. Bowlus, D. A., J. A. Brighton, J. Basic Engg. 431 (Sept. 1968).

  3. Mashelkar, R. A. Proc. Inst. Mech. Engrs. Vol.188, 60/74, 683 (1974).

    Google Scholar 

  4. Richman, J. W., R. S. Azad Appl. Sci. Res.28, 419 (1973).

    Google Scholar 

  5. Ross, D., N. J. Whippany, J. Basic Engg. 915 (July 1956).

  6. Schlichting, H. Boundary layer theory (McGraw-Hill, New York 1960).

    Google Scholar 

  7. Seyer, F. A., P. J. Catania Can. J. Chem. Eng.50, 31 (1972).

    Google Scholar 

  8. Seyer, F. A., A. B. Metzner Amer. Ind. Chem. Engg. J.15 (3), 426 (1969).

    Google Scholar 

  9. Skelland, A. H. P. Non-Newtonian flow and heat transfer (John Wiley & Sons, New York 1967).

    Google Scholar 

  10. Toms, B. A. Proc. First Intern. Congr. on Rheology, Vol. II, pp. 135 (North Holland, Amsterdam 1948).

    Google Scholar 

  11. Virk, P. S. Amer. Ind. Chem. Engg. J.21 (4), 625 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 figures and 1 table

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shintre, S.N., Mashelkar, R.A. & Ulbrecht, J. An approximate theoretical analysis and experimental verification of turbulent entrance region flow of drag reducing fluids. Rheol Acta 16, 490–496 (1977). https://doi.org/10.1007/BF01525647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01525647

Keywords

Navigation