Skip to main content
Log in

Clinical and immunological effects of human recombinant interleukin-2 given by repetitive weekly infusion to normal dogs

  • Original Articles
  • Canine, Cytotoxicity, Interleukin-2, In Vivo, Infusion, Lymphocyte
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Four normal adult dogs received two consecutive weekly cycles of human recombinant interleukin-2 (IL-2) by continuous infusion for 4 days/week. The dose of IL-2 given to each dog was 3×106 units m−2 day−1. Toxicities consisted of mild vomiting, diarrhea, and lethargy to varying degrees in all the dogs. These side-effects were reversed when the treatment was discontinued. Fever, tachypnea, and weight gain were not seen. A marked lymphocytosis and eosinophilia developed in all dogs after completion of each course of IL-2 (resulting in a more than sevenfold increase in each cell type) and persisted for more than 1 month in some. Fresh peripheral blood lymphocytes (PBL) obtained during this lymphocytosis mediated enhanced in vitro lysis of a natural-killer-cell-sensitive canine tumor cell line (CTAC). The in vitro proliferative responses of these same PBL to IL-2 could be detected earlier, progressed faster, and involved more cells than PBL tested prior to IL-2 infusion. Thus, a relatively well-tolerated regime of IL-2 in dogs can induce dramatic increases in lymphocyte numbers and activation, which is associated with augmentation of their in vitro antitumor reactivity. The clinical effectiveness of this immunotherapeutic approach remains to be tested in tumor-bearing dogs where it could serve as a relevant large-animal model for immunotherapy of cancer with IL-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Lab Invest 21: 77

    PubMed  Google Scholar 

  2. Cain GR, Kawakami T, Taylor N, Champlin R (1992) Effects of administration of recombinant human interleukin-2 in dogs. Comp Haematol Int 2: 201

    Google Scholar 

  3. Da Pozzo LF, Hough KL, Holder WD Jr (1992) Toxicity and immunologic effects of continuous infusion of recombinant human interleukin-2 administered by selective hepatic perfusion in dogs. Surgery 111: 326

    PubMed  Google Scholar 

  4. Davis L, Vida R, Lipsky PE (1986) Regulation of human T lymphocyte mitogenesis by antibodies to CD3. J Immunol 137: 3758

    PubMed  Google Scholar 

  5. Del Prete GF, De Carli M, Mastromauro C, Biagiotti R, Macchia D, Falagiani P, Ricci M, Romagnani S (1991) Purified protein derivative ofMycobacterium tuberculosis and excretory-secretory antigen(s) ofToxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J Clin Invest 88: 346

    PubMed  Google Scholar 

  6. Enokihara H, Furusawa S, Nakakubo H, Kajitani H, Nagashima S, Saito K, Shishido H, Hitoshi Y, Takatsu K, Noma T, Shimizu A, Honjo T (1989) T cells from eosinophilic patients produce interleukin-5 with interleukin-2 stimulation. Blood 73: 1809

    PubMed  Google Scholar 

  7. Ettinghausen SE, Lipford EHI, Mule JJ, Rosenberg SA (1985) Systemic administration of recombinant interleukin-2 stimulates in vivo lymphoid cell proliferation in tissues. J Immunol 135: 1488

    PubMed  Google Scholar 

  8. Ettinghausen SE, Moore JG, White DE, Plantanias L, Young NS, Rosenberg SA (1987) Hematologic effects of immunotherapy with lymphokine-activated-killer cells and recombinant interleukin-2 in cancer patients. Blood 69: 1654

    PubMed  Google Scholar 

  9. Fisher RI, Coltman CA, Doroshow JH, Rayner AA, Hawkins MJ, Mier JW, Wiernik P, McMannis JD, Weiss RG, Margolin KA, Gemlo BT, Hoth DF, Parkinson DR, Paietta E (1988) Metastatic renal cancer treated with interleukin-2 and lymphokine-activated killer cells. Ann Int Med 108: 518

    PubMed  Google Scholar 

  10. Gebhard DH, Carter DB (1992) Identification of canine T-lymphocyte subsets with monoclonal antibodies. Vet Immunol Immunopathol 33: 187

    PubMed  Google Scholar 

  11. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA (1982) The lymphokine activated killer cell phenomenon: lysis of NK resistant fresh solid tumor cells by IL-2 activated autologous human peripheral blood lymphocytes. J Exp Med 155: 1823

    PubMed  Google Scholar 

  12. Hank JA, Kohler PC, Weil-Hillman G, Rosenthal N, Moore KH, Storer B, Minkoff D, Bradshaw J, Bechhofer R, Sondel PM (1988) In vivo induction of the lymphokine-activated killer phenomenon: interleukin-2-dependent human non-major histocompatibility complex-restricted cytotoxicity generated in vivo during administration of human recombinant interleukin-2. Cancer Res 48: 1965

    PubMed  Google Scholar 

  13. Hank JA, Robinson RR, Surfus J, Mueller BM, Reisfeld RA, Cheung NK, Sondel PM (1990) Augmentation of antibody-dependent cell mediated cytotoxicity following in vivo therapy with recombinant interleukin 2. Cancer Res 50: 5234

    PubMed  Google Scholar 

  14. Hank JA, Weil-Hillman G, Surfus JE, Sosman JA, Sondel PM (1990) Addition of interleukin-2 in vitro augments detection of lymphokine-activated killer activity generated in vivo. Cancer Immunol Immunother 31: 53

    PubMed  Google Scholar 

  15. Harris C, Pierce K, King G, Yates KM, Hall J, Tizard I (1991) Efficacy of acemannan in treatment of canine and feline spontaneous neoplasms. Mol Biother 3: 207

    PubMed  Google Scholar 

  16. Helfand SC, Modiano JF, Nowell PC (1992) Immunophysiological studies of interleukin-2 and canine lymphocytes. Vet Immunol Immunopathol 33: 1

    PubMed  Google Scholar 

  17. Helfand SC, Soergel SA, Hank JA, Sondel PM (1994) Induction of lymphokine-activated killer (LAK) activity in canine lymphocytes with low dose human recombinant interleukin-2 in vitro. Cancer Biother, in press

  18. Jardine JH, Jackson IIJ, Lotzova E, Savary CA, Small SM (1989) Tumoricidal effect of interleukin-2-activated killer cells in canines. Vet Immunol Immunopathol 21: 153

    PubMed  Google Scholar 

  19. Kawase I, Brooks CG, Kuribayashi K, Olabuenaga S, Newman W, Gillis S, Henney CS (1983) Interleukin-2 induces γ-interferon production: participation of macrophages and NK-like cells. J Immunol 131: 288

    PubMed  Google Scholar 

  20. Kohler PC, Hank JA, Moore KH, Storer B, Bechhofer R, Sondel PM (1987) Phase I clinical evaluation of recombinant interleukin-2: In: Truitt RL, Gale RP, Bortin MM (eds) Cellular immunotherapy of cancer. Liss, New York, p 161

    Google Scholar 

  21. Kohler PC, Hank JA, Moore KH, Storer B, Bechhofer R, Hong R, Sondel PM (1989) Phase I clinical trial of recombinant interleukin-2: a comparison of bolus and continuous intravenous infusion. Cancer Invest 7: 213

    PubMed  Google Scholar 

  22. Kovach JS, Gleich GJ (1986) Eosinophilia and fluid retention in systemic administration of interleukin-2. J Clin Oncol 4: 86

    Google Scholar 

  23. Krakowka S (1983) Natural killer cell activity in adult gnotobiotic dogs. Am J Vet Res 44: 635

    PubMed  Google Scholar 

  24. Laterniere R, Rosenberg SA (1985) Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin-2. Cancer Res 45: 3735

    PubMed  Google Scholar 

  25. Leo O, Foo M, Sachs DH, Samelson LE, Bluestone JA (1987) Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci USA 84: 1374

    PubMed  Google Scholar 

  26. Leonard WJ, Depper JM, Crabtree JR, Rudikoff S, Pumphrey J, Robb RJ, Kronke M, Svetlik PB, Peffer NJ, Waldmann TA, Greene WC (1984) Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature 311: 626

    PubMed  Google Scholar 

  27. Lewis DE, Rickman WJ (1992) Methodology and quality control for flow cytometry: In: Rose NR, De Macario EC, Fahey J, Friedman H, Penn GM (eds) Manual of clinical laboratory immunology. American Society for Microbiology, Washington, DC, p 157

    Google Scholar 

  28. Lotzova E, Savary CA, Schachner JR, Huh JO, McCredie K (1991) Generation of cytotoxic NK cells in peripheral blood and bone marrow of patients with acute myelogenous leukemia after continuous infusion with recombinant interleukin-2. Am J Hematol 37: 88

    PubMed  Google Scholar 

  29. Loughran TP Jr, Deeg HJ, Storb R (1985) Morphologic and phenotypic analysis of canine natural killer cells: evidence for T-cell lineage. Cell Immunol 95: 207

    PubMed  Google Scholar 

  30. MacEwen EG, Kurzman ID, Rosenthal RC, Smith BW, Manley PA, Roush JK, Howard PE (1989) Therapy for osteosarcoma in dogs with intravenous injection of liposome-encapsulated muramyl tripeptide. J Natl Cancer Inst 81: 935

    PubMed  Google Scholar 

  31. MacEwen EG, Patnaik AK, Harvey HJ, Hayes AA, Matus R (1986) Canine oral melanoma: comparison of surgery versus surgery plusCorynebacterium paryum. Cancer Invest 4: 397

    PubMed  Google Scholar 

  32. Malkovsky M, Loveland B, North M, Asherson GL, Liquan G, Ward P, Fiers W (1987) Recombinant interleukin-2 directly augments the cytotoxicity of human monocytes. Nature 325: 262

    PubMed  Google Scholar 

  33. Mazumder A, Rosenberg SA (1984) Successful immunotherapy of natural killer-resistant established pulmonary metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin-2. J Exp Med 159: 495

    PubMed  Google Scholar 

  34. Meuer SC, Hodgdon JC, Hussey RE, Protentis JP, Schlossman SF, Reinherz EL (1983) Antigen-like effects of monoclonal antibodies directed at receptors on human T cell clones. J Exp Med 158: 988

    PubMed  Google Scholar 

  35. Moore AS, Theilen GH, Newell AD, Madewell BR, Rudolf AR (1991) Preclinical study of sequential tumor necrosis factor and interleukin 2 in the treatment of spontaneous canine neoplasms. Cancer Res 51: 233

    PubMed  Google Scholar 

  36. Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrow. Science 193: 1007

    PubMed  Google Scholar 

  37. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7: 145

    PubMed  Google Scholar 

  38. Mule JJ, Shu S, Schwarz SL, Rosenberg SA (1984) Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 225: 1487

    PubMed  Google Scholar 

  39. Munn DH, Cheung NK (1987) Interluekin-2 enhancement of monoclonal antibody mediated cellular cytotoxicity against human melanoma. Cancer Res 47: 6600

    PubMed  Google Scholar 

  40. Perez EA, Scudder SA, Meyers FA, Tanaka MS, Paradise C, Gandara DR (1991) Weekly 24-hour continuous infusion interleukin-2 for metastatic melanoma and renal cell carcinoma: a phase 1 study. J Immunother 10: 57

    PubMed  Google Scholar 

  41. Phillips JH, Lanier LL (1986) Dissection of the lymphokine-activated killer phenomenon: relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med 164: 814

    PubMed  Google Scholar 

  42. Reem GH, Yeh N-H (1985) Interleukin-2 regulates expression of its receptor and synthesis of gamma interferon by human T lymphocytes. Science 225: 429

    Google Scholar 

  43. Rosenberg SA (1988) Immunotherapy of patients with advanced cancer using interleukin-2 alone or in combination with lymphokine activated killer cells. In: DeVita VT, Hellman S, Rosenberg SA (eds) Important advances in oncology 1988. Lippincott, Philadelphia, p 217

    Google Scholar 

  44. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Vetto JT, Seipp CA, Simpson C (1986) A new approach to the therapy of cancer based on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2. Surgery 100: 262

    PubMed  Google Scholar 

  45. Rosenberg SA, Lotze MT, Yang JC, Aebersold PM, Linehan WM, Seipp CA, White DE (1989) Experience with the use of high-dose interleukin-2 in the treatment of 652 human cancer patients. Ann Surg 210: 474

    PubMed  Google Scholar 

  46. Sedgwick JB, Frick WE, Sondel PM, Hank JA, Borden E, Busse WW (1990) The appearance of hypodense eosinophils during interleukin-2 treatment. J Allergy Clin Immunol 85: 557

    PubMed  Google Scholar 

  47. Shi F, MacEwen EG, Kurzman ID (1993) In vitro and in vivo effects of doxorubicin combined with liposome-encapsulated muramyl tripeptide on canine monocyte activation. Cancer Res 53: 3986

    PubMed  Google Scholar 

  48. Shiloni E, Eisenthal A, Sachs D, Rosenberg SA (1987) Antibody-dependent cellular cytotoxicity mediated by murine lymphocytes activated with recombinant interleukin-2. J Immunol 138: 1991

    Google Scholar 

  49. Siegel JP, Sharon M, Smith PL, Leonard WJ (1987) The IL-2 receptor β chain (p70): role in mediating signals for LAK, NK, and proliferative activities. Science 238: 75

    PubMed  Google Scholar 

  50. Smith KA (1988) Interleukin-2: inception, impact, and implications. Science 240: 1169

    PubMed  Google Scholar 

  51. Smith KA, Cantrell DA (1985) Interleukin 2 regulates its own receptors. Proc Natl Acad Sci USA 82: 864

    PubMed  Google Scholar 

  52. Sondel PM, Kohler PC, Hank JA, Moore KH, Rosenthal NS, Sosman JA, Bechhofer R, Storer B (1988) Clinical and immunological effects of recombinant interleukin-2 given by repetitive weekly cycles to patients with cancer. Cancer Res 48: 2561

    PubMed  Google Scholar 

  53. Sosman JA, Kohler PC, Hank J, Moore KA, Bechhofer R, Storer B, Sondel PM (1988) Repetitive weekly cycles of recombinant human interleukin-2: responses of renal cell carcinoma with acceptable toxicity. J Natl Cancer Inst 80: 60

    PubMed  Google Scholar 

  54. Transy C, Moingeon PE, Marshall B, Stebbins C, Reinherz EL (1989) Most murine anti human CD3 mAb recognize the human CD3ɛ subunit: In: Knapp W, Dorken B, Gilks WR, Rieber EP, Schmidt RE, Stein H, Borne AEGK von dem (eds) Leukocyte typing IV. White cell differentiation antigens. Oxford University Press, Oxford, p 293

    Google Scholar 

  55. Tunnacliffe A, Olsson C, Traunecker A, Krissansen GW, Karjalainen K, De La Hera A (1989) The majority of CD3 epitopes are conferred by the epsilon chain: In: Knapp W, Dorken B, Gilks WR, Rieber EP, Schmidt RE, Stein H, Borne AEGK von dem (eds) Leukocyte typing IV: White cell differentiation antigens. Oxford University Press, Oxford, p 295

    Google Scholar 

  56. Weller PF (1991) The immunobiology of eosinophils. N Engl J Med 324: 1110

    PubMed  Google Scholar 

  57. Yachie A, Miyawaki T, Uwadana N, Ohzeki S, Taniguchi N (1983) Sequential expression of T cell activation (Tac) antigen and Ia determinants on circulating human T cells after immunization with tetanus toxoid. J Immunol 131: 731

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from the University of Wisconsin Graduate School. University of Wisconsin School of Veterinary Medicine Companion Animal Fund, NIH CA-32685, CM-87290, and American Cancer Society CH-237

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helfand, S.C., Soergel, S.A., MacWilliams, P.S. et al. Clinical and immunological effects of human recombinant interleukin-2 given by repetitive weekly infusion to normal dogs. Cancer Immunol Immunother 39, 84–92 (1994). https://doi.org/10.1007/BF01525313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01525313

Key words

Navigation