Skip to main content
Log in

Plastic flow theory for anisotropic media. Report 1. Determining relationships

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. R. Hill, Mathematical Theory of Plasticity [Russian translation], Gostekhizdat, Moscow (1956).

    Google Scholar 

  2. D. Kolarov, A. Baltov, and N. Boncheva, Mechanics of Plastic Media [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  3. A. Sawczuk, “A note of anisotropic hardening,” Bull. Akad. Pol. Sci. Ser. Sci. Techn.,28, No. 11/12, 623–629 (1980).

    Google Scholar 

  4. D. W. A. Rees, “Yield functions that account for the effects of initial and subsequent plastic anisotropy,” Acta Mech.,43, No. 3/4, 223–241 (1982).

    Google Scholar 

  5. Y. F. Dafalias, “Anisotropic hardening of initially orthotropic materials,” Z. Angew. Math. Mech.,59, No. 9. 437–446 (1979).

    Google Scholar 

  6. M. Sugimoto, H. Igaki, and K. Saito, “Equivalent stress (rate) and equivalent strain rate for work hardening materials. (Theory of anisotropic plasticity based on maximum shear stress hypothesis),” Bull. J. Soc. Mech. Eng.,16, No. 102, 1857–1866 (1973).

    Google Scholar 

  7. D. Lee and F. Zaverl, Jr., “A generalized strain rate dependent constitutive equation for anisotropic materials,” Acta Met.,26, No. 11, 1771–1780 (1978).

    Google Scholar 

  8. Z. Sobotka, “Theorie des plastischen fliessens von anisotropen korpern,” Z. Angew. Math. Mech.,49, No. 1, 25–32 (1969).

    Google Scholar 

  9. M. Gotoh, “A theory of plastic anisotropy based on a yield function of fourth order. Part 1,” Int. J. Mech. Sci.,19, No. 9, 505–512 (1977).

    Google Scholar 

  10. Yu. I. Kadashevich and V. V. Novozhilov, “A plasticity theory that takes into account residual microstresses,” Prikl. Mat. Mekh.,22, No. 1, 78–89 (1958).

    Google Scholar 

  11. V. N. Bastun, “Investigation of the load surface of carbon steel subject to plastic deformation,” Probl. Prochn., No. 4, 23–26 (1976).

    Google Scholar 

  12. R. A. Arutvunyan and A. A. Vakulenko, “On the repeated loading of an elastoplastic medium,” Izv. Akad. Nauk SSSR, Mekh., No. 4, 53–61 (1965).

    Google Scholar 

  13. B. I. Koval'chuk, N. M. Kul'chitskii, and A. A. Lebedev, “Plasticity and strength of predeformed chromium steel subjected to biaxial tension at low temperatures,” Probl. Prochn., No. 10, 23–26 (1978).

    Google Scholar 

  14. G. B. Talypov, Plasticity and Strength of Steel Under Complex Loading [in Russian], Leningrad State Univ. (1968), p. 134.

  15. W. M. Mair and H. L. D. Pugh, “Effect of prestrain on yield surface in copper,” J. Mech. Eng. Sci.,6, No. 2, 150–163 (1964).

    Google Scholar 

  16. V. V. Kosarchuk, B. I. Koval'chuk, and A. A. Lebedev, “Experimental investigation of hardening rules for initially anisotropic materials,” Probl. Prochn., No. 9, 3–9 (1982).

    Google Scholar 

  17. R. M. W. Frederking and O. M. Sidebottom, “An experimental evaluation of plasticity theories for anisotropic metals,” Trans. Am. Soc. Mech. Eng.: J. Appl. Mech.,38, No. 1, 15–22 (1938).

    Google Scholar 

  18. T. Ota, A. Shindo, and H. Fukuoka, “A consideration on anisotropic yield criterion,” Proceedings of the Ninth Japanese National Congress on Applied Mechanics (1959), pp. 117–120.

  19. I. L. Dillamore, R. D. Heisel, T. V. Watson, and P. Hayden, “Experimental investigation of mechanical anisotropy of certain commonly used metals,” Mekhanika, No. 5, 134–147 (1972).

    Google Scholar 

  20. N. G. Stout, S. S. Hecker, and R. Bourcier, “An evaluation of anisotropic effective stress-strain criteria for the biaxial yield and flow of 2024 aluminum tubes,” Trans. Am. Soc. Mech. Eng.: J. Eng. Mater. Technol.,105, No. 4, 242–249 (1983).

    Google Scholar 

  21. A. A. Il'yushin, Fundamentals of General Mathematical Theory [in Russian], Izd. Akad. Nauk SSSR, Moscow (1963).

    Google Scholar 

  22. B. I. Koval'chuk, “Criterion of the limiting state of some frame steels in a complex stressed state at room and elevated temperatures,” Probl. Prochn., No. 5, 10–15 (1981).

    Google Scholar 

  23. G. S. Pisarenko and A. A. Lebedev, Deformation and Strength of Metals in a Complex Stressed State [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  24. E. Shiratori, K. Ikegami, and F. Yoshida, “The subsequent yield surfaces after proportional preloading of the Tresce-type Materials,” Bull. J. Soc. Mech. Eng.,19, No. 136, 1122–1128 (1976).

    Google Scholar 

  25. N. Nadai, T. Kakuma, and Y. Miyamoto, “Mechanical behavior of Zircalloy-2 and SUS-316 cladding tubes under biaxial stresses,” Kobe Steel Eng. Rep.,33, No. 1, 66–69 (1983).

    Google Scholar 

  26. K. Ikegami, “Experimental plasticity on the anisotropy of metals,” Colloq. Int. CNRS, No. 295, 201–242 (1982).

    Google Scholar 

  27. A. A. Lebedev, V. V. Kosarchuk, and B. I. Koval'chuk, “Investigation of scalar and vector properties of anisotropic materials in a complex stressed state. Report 1. On the yield condition of anisotropic materials,” Probl. Prochn., No. 3, 25–31 (1982).

    Google Scholar 

  28. W. Prager, “The theory of plasticity: A survey of recent achievements,” Proc. Inst. Mech. Eng.,169, No. 1, 41–57 (1955).

    Google Scholar 

  29. H. Zeigler, “A modification of Prager's hardening rule,” Quart. Appl. Math.,17, No. 1, 55–60 (1959).

    Google Scholar 

  30. R. T. Shield and H. Ziegler, “On Prager's hardening rule,” Z. Angew. Math. Phys. A.,9, No. 3, 260–276 (1958).

    Google Scholar 

  31. B. I. Koval'chuk, V. V. Kosarchuk, and A. A. Lebedev, “Investigation of the scalar and vector properties of anisotropic materials in a complex stressed state. Report 2. Plastic deformations of anisotropic materials under simple loading,” Probl. Prochn., No. 8, 114–121 (1982).

    Google Scholar 

  32. D. W. A. Rees, “Hardening model for anisotropic materials,” Exp. Mech.,21, No. 7, 245–254 (1981).

    Google Scholar 

  33. V. T. Koiter, “Relationships between stresses and deformations, variational theorem, and the theorem of singularity for elastoplastic materials with a singular yield surface,” Mekh.,60, No. 2, 117–121 (1960).

    Google Scholar 

  34. A. S. Vavakin, S. A. Zlatomrezhev, V. N. Kasatikov, and L. P. Stepanov, Experimental Investigation of the Elastoplastic Properties of Aluminum Alloys AMg6 and D16 during Proportional Deformation [in Russian], Inst. Probl. Prochn., Akad. Nauk SSSR (1984), p. 42.

Download references

Authors

Additional information

Institute of Strength Problems, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Problemy Prochnosti, No. 4, pp. 50–57, April, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosarchuk, V.V., Koval'chuk, B.I. & Lebedev, A.A. Plastic flow theory for anisotropic media. Report 1. Determining relationships. Strength Mater 18, 473–482 (1986). https://doi.org/10.1007/BF01524069

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01524069

Keywords

Navigation