Skip to main content
Log in

Surface properties and fatigue limit of metal. Report 1. Dependence of yield stress on layer thickness

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. V. M. Radhakrishnan and C. R. Prasad, “Relaxation of residual stress with fatigue loading,” Eng. Fract. Mech.,8, No. 4, 593–597 (1976)

    Google Scholar 

  2. R. N. Pangborn, S. Weissmann, and S. R. Kramer, “Work hardening in the surface layer and in bulk during fatigue,” Scr. Metall.,12, No. 2, 129–131 (1978).

    Google Scholar 

  3. R. N. Pangborn, R. Yazici, T. Tsakalakos, et at., “Determination of prefracture damage in fatigue and stress-corroded metals by x-ray double crystal diffractometry,” in: Proceedings of Symposium on the Accuracy of Powder Diffraction, U.S. Department of Commerce, National Bureau of Standards, Special Publication No. 567, Gaithersburg, Maryland (1979), pp. 433–450.

  4. Y. Sato, H. Sasaki, and A. Kumana, “Yield of the surface layers of cylinders made of lowcarbon steels,” J. Mater. Sci. Soc. Jpn.,17, No. 3/4, 185–192 (1980).

    Google Scholar 

  5. S. Miyazaki, K. Shidata, and H. Fusita, “Effect of specimen thickness on mechanical properties of polycrystalline aggregates with various grain sizes,” Acta Metall.,27, No. 5, 855–862 (1979).

    Google Scholar 

  6. V. P. Alekhin, Physics of Strength and Ductility of Surface Layers of Materials [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  7. M. Ronev, “Fatigue of high-strength materials,” in: Practure of Metals [Russian translation], Mir, Moscow (1976), pp. 473–527.

    Google Scholar 

  8. S. Kotsan'da, Fatigue Fracture of Metals [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  9. Y. Ochi, S. Sasaki, and T. Hirasawa, “Some observations of fatigue microcracks in lowcarbon steel (on the initiation and distribution characteristics at the early propagation stage),” J. Soc. Mech. Sci. Jpn.,31, No. 345, 559–565 (1982).

    Google Scholar 

  10. V. V. Vasil'ev, L. S. Golbraikh, P. G. Zykin, et al., “Determination of the plastic characteristics of materials with susceptibility to local development of strains,” Probl. Prochn., No. 12, 55–57 (1981).

    Google Scholar 

  11. W. I. Morris, R. V. Inman, and M. R. James, “Measurement of fatigue-induced surface plasticity,” J. Mater. Sci.,17, No. 5, 1413–1419 (1982).

    Google Scholar 

  12. E. A. Belugina, S. I. Popov, and N. A. Khudyakova, “Heterogeneity of microstrains in cyclic deformation,” Probl. Prochn., No. 7, 34–36 (1982).

    Google Scholar 

  13. E. F'Dudarev and E. E. Deryugin, “Microplastic strain and the yield stress of polycrystals,” Izv. Vyssh. Uchebn. Zaved., Fiz.,25, No. 6, 43–45 (1982).

    Google Scholar 

  14. I. I. Il'inskii, V. V. Shevelya, and A. P. Kruglik, “A method of determining microyielding of sheet materials,” Probl. Prochn., No. 2, 105–109 (1983).

    Google Scholar 

  15. M. V. ElHaddad, T. Topper, and K. N. Smith, “Predication of nonpropagation cracks,” Eng. Fract. Mech., No. 3, 573–584 (1979).

    Google Scholar 

  16. H. Nisitani, S. Tanaka, and T. Tadaka, “Relation between microcrack and coaxing effect on aged 0.15% C steels after quenching at low temperatures,” J. Soc. Mat. Sci. Jpn.,26, 317, 143–149 (1980).

    Google Scholar 

  17. Awantani, K. Katagiri, and T. Shiraishi, “The mechanism of the formation of nonpropagating fatigue cracks,” Met. Sci.,10, No. 8 277–281 (1976).

    Google Scholar 

  18. Y. Kimura, K. Yamada, M. Shimuzu, and T. Kunio, “A statistical interpretation on the basis of the extreme theory,” Eng. Fract. Mech.,12, No. 3, 317–328 (1979).

    Google Scholar 

  19. T. Yokobori, M. Nanbu, and N. Takeuchi, “Observations of initiation and propagation of fatigue cracks by the plastic replication method,” Rep. Res. Strength Fract. Mater.,5, No. 1, 1–17 (1969).

    Google Scholar 

  20. V. R. Shabalin, “Mechanism of plastic deformation of metals,” Dokl. Akad. Nauk SSSR,144, No. 3, 551–553 (1962).

    Google Scholar 

  21. M. P. Markovets, Determination of the Mechanical Properties of Metals on the Basis of hardness [in Russian], Mashinostroenie, Moscow (1979).

    Google Scholar 

  22. Microhardness [in Russian], Publishing House of the Academy of Sciences of the SSSR, Moscow (1950).

  23. A. G. Atkins, “Topics in indentation hardness,” Met. Sci.,16, No. 3, 127–137 (1982).

    Google Scholar 

  24. K. Nitsche, Testing of metals [Russian translation], Metallurgiya, Moscow (1967).

    Google Scholar 

  25. H. Blumenauer, Testing of Metals (Handbook) [Russian translation], Metallurgiya (1979).

  26. V. A. Timoshenko, V. V. Ermilov, and M. M. Brukhin, “Indentation of a single irregularity into plastic half space,” Trenie Iznos,3, No. 5, 813–820 (1982).

    Google Scholar 

  27. Ya. B. Fridman, Mechanical Testing of Metals, Vol. 2, Mechanical Tests: Structural Strength [in Russian], Mashinostroenie (1974).

  28. P. A. Rebinder, “Effect of changes in the surface energy on cleavage, hardness and other properties of crystals,” in: Sixth Conference of Russian Physicsists, Proceedings [in Russian], State Publishing House, Moscow (1928), p. 29.

    Google Scholar 

  29. P. A. Rebinder and E. K. Venstram, “Effect of the medium and adsorption layers on plastic yielding of metals,” Izv. Akad. Nauk SSSR, Ser. Fiz., No. 4/5, 531–550 (1937).

    Google Scholar 

  30. G. V. Karpenko, Effect of Active Liquid Media on Fatigue [in Russian], Publishing House of the Academy of Sciences of the Ukrainian SSR, Kiev (1955).

    Google Scholar 

  31. G. V. Karpenko, Yu. V. Goryukov, N. V. Pertsov, and L. S. Bryukhanova, “Investigations of the adsorption reduction of the strength of solids carried out by P. A. Rebinder and his school,” Ziz.-Khim. Mekh. Mater., No. 4, 3–10 (1978).

    Google Scholar 

  32. V. K. Yatsenko, I. A. Stebel'kov, V. F. Pritchenko, et al., “Surface hardening of blades of gas-turbine engines in the ultrasound field,” Probl. Prochn., No. 8, 68–72 (1985). (1985).

    Google Scholar 

  33. V. D. Piskrev, “Methods of inspection of residual stresses,” Tekhnol. Legkikh Splavov, No. 5, 73–78 (1983).

    Google Scholar 

  34. B. F. Balashov, R. A. Dul'nev, T. P. Zakharova, et al., “Design strength of materials and components of gas turbine engines, a handbook for designers,” Tr. Tsentr. Inst. Aviats. Motorostr., No. 835, Moscow (1979).

Download references

Authors

Additional information

Institute of Strength Problems, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Problemy Prochnosti, No. 4, pp. 28–34, April, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokopenko, A.V., Torgov, V.N. Surface properties and fatigue limit of metal. Report 1. Dependence of yield stress on layer thickness. Strength Mater 18, 448–455 (1986). https://doi.org/10.1007/BF01524064

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01524064

Keywords

Navigation